求证:1/(n+1)+1/(n+2)+...+1/3n>5/6(n大于等于2,且是整数!)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:35:04
x){{fkijji#Mm=== 8TL#Ov=_ $tlgSx:{4@1iĦ@lf-0bz|0l͘/˳~1n{'9چϦo##lAiPvp$ف 4p
求证:1/(n+1)+1/(n+2)+...+1/3n>5/6(n大于等于2,且是整数!)
求证:1/(n+1)+1/(n+2)+...+1/3n>5/6(n大于等于2,且是整数!)
求证:1/(n+1)+1/(n+2)+...+1/3n>5/6(n大于等于2,且是整数!)
令f(n)=1/(n+1)+1/(n+2)+1/(n+3)+.+1/(3n);
f(n+1)=1/(n+2)+1/(n+2)+1/(n+3)+.+1/(3n+3)
f(n+1)-f(n)=1/(3n+1)+1/(3n+2)+1/(3n+3)-1/(n+1)
=1/(3n+1)+1/(3n+2)+1/(3n+3)-3/(3n+3)>0
所以{f(n)}单调递增,f(n+1)>f(n)
又因为f(2)=1/3+1/4+1/5+1/6>1/3+1/6+1/6+1/6=5/6
所以f(n)>5/6
解2:n=2易证,假设n=k成立,当n=k+1时
f(n+1)=1/(n+2)+1/(n+2)+1/(n+3)+.+1/(3n+3)
=f(n)+1/(3n+1)+1/(3n+2)+1/(3n+3)-1/(n+1)
>f(n)>5/6
f(x)=e^x-x 求证(1/n)^n+(2/n)^n+...+(n/n)^n
求证(1+1/n)^n
设n∈N,n>1.求证:logn (n+1)>log(n+1) (n+2)
求证:3^n> (n +2)*2^((n-1) (n∈N*,且n>2)
求证:3^n>(n+2)2^(n+1)(n>2,n∈N*)用二项式定理
当n为正偶数,求证n/(n-1)+n(n-2)/(n-1)(n-3)+...+n(n-2).2/(n-1)(n-3)...1=n
求证2^n>2n+1(n>=3)
已经n∈N..n≥2.求证:1/2,
已经n∈N..n≥2.求证:1/2
求证n(n+1)(n+2)能被6整除
求证1/(n+1)+1/(n+2)+.+1/(3n+1)>1 [n属于N*]
已知 n>1且n属于N* ,求证logn(n+1)>logn+1(n+2)
设n属于N,n>1,求证logn (n+1)>logn+1 (n+2)
求证:N=(5^2)*(3^2n+1)*(2^n)-(3^n)*(6^n+2)
∑(n^2-n^3/2^n+3^n)求证他是绝对收敛 n=1
求证:C(0,n)+2C(1,n)+.+(n+1)C(n,n)=2^n+2^(n-1)
(1) 求证:n
求证log(n)(n+1)>log(n+1)(n+2),其中n∈N,且n>1n和n+1都是底数