求证:1/(n+1)+1/(n+2)+...+1/3n>5/6(n大于等于2,且是整数!)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:35:04
求证:1/(n+1)+1/(n+2)+...+1/3n>5/6(n大于等于2,且是整数!)
x){{fkijji#Mm=== 8TL#Ov=_ $tlgSx:{4@1iĦ@lf-0bz|0l͘ /˳~1n{'9چϦo##lAiPvp$ف4p

求证:1/(n+1)+1/(n+2)+...+1/3n>5/6(n大于等于2,且是整数!)
求证:1/(n+1)+1/(n+2)+...+1/3n>5/6(n大于等于2,且是整数!)

求证:1/(n+1)+1/(n+2)+...+1/3n>5/6(n大于等于2,且是整数!)
令f(n)=1/(n+1)+1/(n+2)+1/(n+3)+.+1/(3n);
f(n+1)=1/(n+2)+1/(n+2)+1/(n+3)+.+1/(3n+3)
f(n+1)-f(n)=1/(3n+1)+1/(3n+2)+1/(3n+3)-1/(n+1)
=1/(3n+1)+1/(3n+2)+1/(3n+3)-3/(3n+3)>0
所以{f(n)}单调递增,f(n+1)>f(n)
又因为f(2)=1/3+1/4+1/5+1/6>1/3+1/6+1/6+1/6=5/6
所以f(n)>5/6
解2:n=2易证,假设n=k成立,当n=k+1时
f(n+1)=1/(n+2)+1/(n+2)+1/(n+3)+.+1/(3n+3)
=f(n)+1/(3n+1)+1/(3n+2)+1/(3n+3)-1/(n+1)
>f(n)>5/6