函数f(x)=(ax+1)/(x+2)(a为常数),在(-2,2)内为增函数,则实数a的取值范围是?求详解.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:22:03
函数f(x)=(ax+1)/(x+2)(a为常数),在(-2,2)内为增函数,则实数a的取值范围是?求详解.
xTr@!]g!+R>Bn-qv)f _Hh]3^=()Gz#IIKAI, cS 6"rXy Ҝ.Ab{fݫ>*Ğ\,*,MgIIF{"XVJnk/2BRo}+xW/&D˾TLJmJ{N(a'el Q +_Kױr7'wyl6HJ C ޳'f|t~D?mt\`WiG8 ZG,6.%ly,8FB45@P}c]H8>E|-B6 X:h!oC8o8JnnDGhA_=K[p~Ț6 LN:!6htLrVoשc[ngx9wq[;#3hN2)ʳ3vt[d  ,$T)#5p\x1%x.hjjWk

函数f(x)=(ax+1)/(x+2)(a为常数),在(-2,2)内为增函数,则实数a的取值范围是?求详解.
函数f(x)=(ax+1)/(x+2)(a为常数),在(-2,2)内为增函数,则实数a的取值范围是?求详解.

函数f(x)=(ax+1)/(x+2)(a为常数),在(-2,2)内为增函数,则实数a的取值范围是?求详解.
之前那个人错了.
f(x)=(ax+1)/(x+2)=[a(x+2)-2a+1]/(x+2)
=a+(1-2a)/(x+2) 是增函数
而1/(x+2)是减函数, 所以1-2a1/2

f'(x)=[(ax+1)'(x+2)-(x+2)'(ax+1)]/(x+2)^2
=a/(x+2)^2
∵f(x)在(-2,2)内为增函数,
∴y'=a/(x+2)^2≥0在x∈(-2,2)上恒成立
解不等式a/(x+2)^2≥0得a≥0
∴实数a的取值范围是a≥0

f(x)=(ax+1)/(x+2)=[a(x+2)-2a-1]/(x+2)
=a-(2a+1)/(x+2) 是增函数
所以 (2a+1)/(x+2)是减函数
所以2a+1>0 a>-1/2为什么是减函数就要2a+1>0因为1/(x+2)显然是一个减函数(在定义域内) 所以2a+1就必须大于0 才能使得(2a+1)/(x+2)是减函数。 另外楼下的做法: f'(...

全部展开

f(x)=(ax+1)/(x+2)=[a(x+2)-2a-1]/(x+2)
=a-(2a+1)/(x+2) 是增函数
所以 (2a+1)/(x+2)是减函数
所以2a+1>0 a>-1/2

收起

f(x)=a+(1-2a)/(x+2)
a是常数,不用考虑,我们知道1/(x+2)在(-2,正无穷)内为减函数
要是f(x)在(-2,正无穷)内为增函数,(1-2a)必须是负的,
1-2a<0,所以a>1/2