大学高数,抛物线y^2=x与直线y=x围成的图形面积用定积分表示为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 07:34:47
大学高数,抛物线y^2=x与直线y=x围成的图形面积用定积分表示为
xP]KP+ 6r#;"uvJA" Fa_Rc/W  zsy9VNv#lf>3wTΫ| 00̪Pm{g>}xA:A@ڪ^_[; e$%Ed|lX1+zpYI y1T E@p*rDs,7y?RQZs2re9^Ra0E[<gy tV͆|rzrR'7s8Yҥ_WqqE_̉*E$ÂRC@

大学高数,抛物线y^2=x与直线y=x围成的图形面积用定积分表示为
大学高数,抛物线y^2=x与直线y=x围成的图形面积用定积分表示为

大学高数,抛物线y^2=x与直线y=x围成的图形面积用定积分表示为
y=x
y²=x
x²=x
x(x-1)=0
x1=0 x2=1
y=√x
面积:∫(0,1)(√x-x)dx=[x^(3/2)/(3/2)-x²/2] |(0,1)
=1^(3/2)/(3/2)-1²/2-0^(3/2)/(3/2)+0²/2
=2/3-1/2
=4/6-3/6
=1/6

∫{(√x)—x}dx 然后上下限为x的范围

打不了积分符号,用A代替,
A(0,1)A(x,sqrt(x))dydx