数列{an}满足a(n+1)=3an+n(n属于正整数),是否存在a1,使{an}成等差数列

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 11:38:42
数列{an}满足a(n+1)=3an+n(n属于正整数),是否存在a1,使{an}成等差数列
xTNA~l3 Ƙt"YzCq1RTVBƝvkF/؟}g~+Q5q{2`^#u(/ ~&SG-Stx[ɰ%JWm]7>B6y)qAaĨC1%aƳ) K^Do3FxԫP2Ec:krHF|{?jyeUv#*}A)&K8 :B39GTx9еa& pn\AFCa @-IXL u`)z0sM0-[gλ.Q|= 6m-r%bqͻm⣝=]a~!ޜye A/k 7 LlӶ5/)zR:n,1gLFUlX2^H$Q~0vsDtbH$9y9l=+#gx2&j,IUw6"SDbliδB6-  7RMlQb o,33R 8[HKz$UteY3xʚ =/ g cyE.Fm^G\q^KLOgfN1r{9vSxL

数列{an}满足a(n+1)=3an+n(n属于正整数),是否存在a1,使{an}成等差数列
数列{an}满足a(n+1)=3an+n(n属于正整数),是否存在a1,使{an}成等差数列

数列{an}满足a(n+1)=3an+n(n属于正整数),是否存在a1,使{an}成等差数列
首先假设存在a1使{an}成等差数列,则a1+a3=2a2,设公差为d.由{an}满足a(n+1)=3an+n可知a2=3a1+1;
a3=3a2+2=3(a1+d)+2.因此a1+3(a1+d)+2=2(3a1+1)化简后得a1=3d/2.
由于公差为d,所以a2=a1+d=5d/2;a3=a2+d=7d/2;a3=a2+d=9d/2;
又由于{an}满足a(n+1)=3an+n,a2=3a1+1=1+9d/2;
a3=3a2+2=2+15d/2;a4=3a3+3=3+21d/2;
则:d=a4-a3=a3-a2=a2-a1=1+3d,所以由d=1+3d得d=-1/2.
因为a1=3d/2,所以,a1=-3/4.
所以存在a1,使{an}成等差数列
希望我的解题思路能给你提供一点帮助.

a(n+1) = 3a(n) + n, n = 1,2,...

a(n+1) + b(n+1) + c = 3[a(n) + bn + c],

n = 3bn + 3c - bn - b - c = 2bn + 2c - b,
b = 1/2, c = b/2 = 1/4.
a(n+1) + (n+1)/2 + 1/4 = 3[a(n) + ...

全部展开

a(n+1) = 3a(n) + n, n = 1,2,...

a(n+1) + b(n+1) + c = 3[a(n) + bn + c],

n = 3bn + 3c - bn - b - c = 2bn + 2c - b,
b = 1/2, c = b/2 = 1/4.
a(n+1) + (n+1)/2 + 1/4 = 3[a(n) + n/2 + 1/4],
设b(n) = a(n) + n/2 + 1/4, n = 1,2,...
则 b(n+1) = 3b(n).
{b(n)}是首项为b(1) = a(1) + 1/2 + 1/4 = a(1) + 3/4,公比为3的等比数列。
b(n) = [a(1)+3/4]3^(n-1), n = 1,2,...
a(n) = b(n) - n/2 - 1/4 = [a(1)+3/4]3^(n-1) - n/2 - 1/4, n = 1,2,...
a(n+1) = [a(1)+3/4]3^n - (n+1)/2 - 1/4
a(n+1) - a(n) = [a(1)+3/4]3^n - (n+1)/2 - 1/4 - {[a(1)+3/4]3^(n-1) - n/2 - 1/4}
= 2[a(1)+3/4]3^(n-1) - 1/2
要使得 a(n+1) - a(n)与n无关,只能a(1)= -3/4.
当a(1) = -3/4时,
a(n) = -n/2 - 1/4. n = 1,2,...
{a(n)}成等差数列。

收起