谁知道菲波纳切数列的通项公式咋写?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 00:21:28
谁知道菲波纳切数列的通项公式咋写?
xTmkP+$Ir M9E܎"2gM׵DG;Pκ~_$+`BHy9yO5}gR_ݳct鵷&y5vk%jXr*ySoi^4xX"p>wT.C"]:N6bR# =1HT1[H4,q nչYK]C#E%y94RT#()]x"#v13

谁知道菲波纳切数列的通项公式咋写?
谁知道菲波纳切数列的通项公式咋写?

谁知道菲波纳切数列的通项公式咋写?
F(n)=F(n-1)+F(n-2) (n≥3)
设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1, -rs=1
n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]
将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)
那么:
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)
r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2
则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}

F1=1.F2=1
Fn+2=Fn+F(n+1) n>=1

详见:http://zhidao.baidu.com/question/61134474.html?si=1&wtp=wk