函数f(X)对任意的mn属于R都有f(m+n)=f(m)+f(n)-1并且x>0恒有f(x)大于1求证f(X)在R上是增函数若f(3)=4解不等式f(a^2+a-5)<2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 11:36:22
函数f(X)对任意的mn属于R都有f(m+n)=f(m)+f(n)-1并且x>0恒有f(x)大于1求证f(X)在R上是增函数若f(3)=4解不等式f(a^2+a-5)<2
xRMO@;ݴ -rGpdRQ#hDOBJHLnYM

函数f(X)对任意的mn属于R都有f(m+n)=f(m)+f(n)-1并且x>0恒有f(x)大于1求证f(X)在R上是增函数若f(3)=4解不等式f(a^2+a-5)<2
函数f(X)对任意的mn属于R都有f(m+n)=f(m)+f(n)-1并且x>0恒有f(x)大于1
求证f(X)在R上是增函数
若f(3)=4解不等式f(a^2+a-5)<2

函数f(X)对任意的mn属于R都有f(m+n)=f(m)+f(n)-1并且x>0恒有f(x)大于1求证f(X)在R上是增函数若f(3)=4解不等式f(a^2+a-5)<2
函数f(X)对任意的mn属于R都有f(m+n)=f(m)+f(n)-1,
取m=0,则有f(n)=f(0)+f(n)-1,即f(0)=1,
取m=x,n=-x,则f(0)=f(x-x)=f(x)+f(-x)-1=1,所以f(-x)=2-f(x),
因为当x>0时恒有f(x)>1,
设x10,所以f(x2-x1)=f(x2)+f(-x2)-1=f(x2)+2-f(x1)-1>1,
即f(x2)-f(x1)>0,所以f(x1)因为f(3)=4,所以f(3)=f(2+1)=f(2)+f(1)-1=f(1+1)+f(1)-1=f(1)+f(1)-1+f(1)-1=4,
即3f(1)=6,f(1)=2,
f(a^2+a-5)<2,即f(a^2+a-5)<f(1),因为f(x)是增函数,
所以a^2+a-5<1,a^2+a-6<0,(a+3)(a-2)<0,所以-3

定义在R+上的函数f(x)对于任意m,n属于R+,都有f(mn)=f(m)+f(n),x>1时,f(x) 函数f(X)对任意的mn属于R都有f(m+n)=f(m)+f(n)-1并且x>0恒有f(x)大于1求证f(X)在R上是增函数若f(3)=4解不等式f(a^2+a-5)<2 定义在R+上的函数f(x),对于任意的m,n属于R+,都有f(mn)=f(m)+f(n)成立,当x>1时,f(x)1 函数f(x)对任意的m,n属于R,都有f(m+n)=f(m)+f(n)-1,并且对x>0,有f(x)>1.(1)证f(x)在R上的单调性 定义在R+上的函数f(X),对于任意的m,n属于正实数都有f(mn)=f(m)+f(n)成立,当x>1时,f(x) 设函数f(X)的定义域R+,对任意正实数mn恒有f(mn)=f(m)+f(n).当x>1时f(x)>0f(2)=1 求证f(x)在R+上是增函数 函数f(x)的导函数为f'(x),对任意的x属于R,都有2f'(x)>f(x)成立,则3f(2ln2) 已知函数f(x),对任意x,y属于R,都有f(x+y)=f(x)+f(y),则f(x)的奇偶性如何 定义在R*上的函数f(X),对于任意的m,n属于正实数,都有f(mn)=f(m)+f(n)成立,且f(X)在R*上是减函数.(I)计算f(1);(II)当f(2)=1/2时,解不等式f(x^2-3x)>1 已知函数f x对任意的ab 属于R,都有f(a+b)=f(a)+f(b)-1已知函数f x对任意的ab 属于R,都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1(1)求证:f(x)是R上的增函数(2)若f(4)=5,f(m^2-2) 已知定义在R上的函数f(x)满足:(1)对任意的x,y属于R,都有f(xy)=f(x)+f(y);已知定义在R上的函数f(x)满足:(1)对任意的x,y属于R,都有f(xy)=f(x)+f(y);(2)当x>1是,f(x)>0.求证:(1)f(1)=0;(2)对任意的x属于R,都有f(1 函数f(x)对于任意的m,n属于R,都有f(m+n)=f(m)+f(n)-1,且x>0时,f(x)>0,求证f(x)在R上为增函数 函数f(x)在R上是增函数,且对任意a,b属于R,都有f(a+b)=f(a)+f(b)-1,若f(4)=5,则不等式f(3m^2-m-2) 函数F(x)定义域为R,对任意a b属于R都有f(a+b)=f(a)+f(b),且当X大于零时F(x)小于零恒成立.F(3)=-3此函数是单调减函数,而且是奇函数.请求出函数y=F(x)在[m,n]上的值域.其中m,n属于整数 抽象函数与函数不等式f(x)对任意的m.n属于R都有f(m+n)=f(m)+f(n)-1,并且当x>0时,f(x)>1.(1)求证:f(x)在R上是增函数;(2)若f(3)=4解不等式f(a^2+a-5) 单调减函数,且是奇函数函数F(x)定义域为R,对任意a b属于R都有f(a+b)=f(a)+f(b),且当X大于零时F(x)小于零恒成立.F(3)=-3请求出函数y=F(x)在[m,n]上的值域.其中m,n属于整数 例1.定义欲在R上的函数F(X),对于任意的M,N都属于R,都有F(MN)=F(M)+F(N)成立,当X>1时,F(X)-1R上应该有个小正号~ 定义在R+上的函数f(x),对于任意的m,n∈R+,都有f(mn)=f(m)+f(n),x>1时,f(x)