f(0)=0,f'(o)=1,[xy(x+y)-f(x)y]dx+[f'(x)+x^2y]dy]=0为全微分方程,求f(x)微分方程通解.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:58:43
f(0)=0,f'(o)=1,[xy(x+y)-f(x)y]dx+[f'(x)+x^2y]dy]=0为全微分方程,求f(x)微分方程通解.
xSN@bwll: X@lfvI[DU[hVj",T)UFxΊ_ nDHq)TbܼK[LPm8DUD71<1xܿxzZXь.`x^l8We2aʲ1,1!-[1racXYJ$C.CZIn'ow{=g}hF+6p0G^r1e2a:PʜCYfjPJV,`*[{oo

f(0)=0,f'(o)=1,[xy(x+y)-f(x)y]dx+[f'(x)+x^2y]dy]=0为全微分方程,求f(x)微分方程通解.
f(0)=0,f'(o)=1,[xy(x+y)-f(x)y]dx+[f'(x)+x^2y]dy]=0为全微分方程,求f(x)微分方程通解.

f(0)=0,f'(o)=1,[xy(x+y)-f(x)y]dx+[f'(x)+x^2y]dy]=0为全微分方程,求f(x)微分方程通解.
所以D[xy(x+y)-f(x)y]/Dy=D[f'(x)+x^2y]/Dx,D表偏导
x^2+2xy-f(x)=f''(x)+2xy
f''(x)+f(x)=x^2 (*)
先找齐次解,f''(x)+f(x)=0,
特征根方程 r^2+1=0,r=±i
f(x)=Acos x+Bsinx
特解,看着就像二次函数,x^2-2满足方程(*),没凑出就直接f=ax^2+bx+c乖乖列方程
f(x)=Acosx+Bsinx+x^2-2
f(0)=0,A-2=0,A=2
f'(0)=1,B=1
f(x)=2cosx+sinx+x^2-2
假设这是一个Q的全微分
dQ/dx=xy(x+y)-yf(x)=x^2y+xy^2-y(2cosx+sinx+x^2-2)=xy^2+2y-2ycosx-ysinx
dQ/dy=f'(x)+x^2y=-2sinx+cosx+2x+x^2y
dQ=(xy^2+2y-2ycosx-ysinx)dx
dQ=(-2sinx+cosx+2x+x^2y)dy
随便用哪个积分(xy^2 dx积分得x^2y^2/2以此类推)
Q=x^2y^2/2+2xy-2ysinx+ycosx+C1
所以全微分方程dQ=0
Q=C2
即x^2y^2/2+2xy-2ysinx+ycosx=C(C=C2-C1)

导数:f(x+y)=f(x)f(y),且f'(o)=1,求f'(x)f(x+y)=f(x)f(y),且f'(o)=1,求f'(x)f(x+y)=f(x)+f(y)+2xy,且f'(o)存在,求f'(x) f(1+x)=af(x),且f'(0)=b,求f'(1) 对一切实数x、y属于R函数f(x)满足f(xy)=f(x)f(y)且f(o)不等于0,则f(2010)= (0,正无穷)上f(x),f(xy)=f(x)+ f(y),x>1时f(x) f(x)定义域(0,正无穷),f(xy)=f(x)+f(y) 当x>1时,f(x) f(xy)=f(x)+f(y) 如何证明f(-1)=0 f'(0)=1,f(x+y)=f(x)+f(y)+2xy,求f(x) x属于R且不等于0 f(xy)=f(x)+f(y) x>1 f(x)>0 f(2)=1 证f(x)是偶函数 f(x)在(o,+无穷)是增函数有两问 证1.f(x)是偶函数2.f(x)在(o,+无穷)是增函数 对于任意函数x、y,总有f(xy)-f(x)=f(y)(xy≠0),求证1.f(1)=02.f(1/x)=-f(x)3.f(x/y)=f(x)-f(y) f(0)=0,f'(o)=1,[xy(x+y)-f(x)y]dx+[f'(x)+x^2y]dy]=0为全微分方程,求f(x)微分方程通解. f(x)对于任意正数x,y都有f(xy)=f(x)·f(y),且f(x)≠0,x>1时f(x) 已知函数f(x)满足对于任意实数x,y总有f(xy)-f(x)=f(y)(xy不等于0)求证,f(1/x)=-f(x)f(x/y)=-f(y)要具体步骤的 x,y∈R+,满足f(xy)=f(x)+f(y),x>1时,f(x)>0,f(6)=1,求f(x+3) f(xy)=f(x)+f(y) f(1/2)=1 证明奇函数对于函数f(x)的定义域是(0,+∞),f(xy)=f(x)+f(y) 且f(1/2)=1,如果对于0 f(xy)=f(x)+f(y),且当x大于1时,f(x)大于0 f(x)+f(y)=f(xy) f(2)=1证f(8)=3f(x)是定义在(o,正无穷)上的 增函数 设f(x)是定义域在(0,+∞)上的增函数,f(2)=1,且f(xy)=f(x)=f(y),求满足不等式f(x)+f(x-3)≤2的x的取值范围.f(xy)=f(x)=f(y)改为f(xy)=f(x)+f(y) 已知函数f(x)(x≠0)满足f(xy)=f(x)+f(y)问1);f(1)=f(-1)=0;证f(x)为偶函数;3)fx在(o,+∞)上市增函数,解不等式f(x)+f(x-1/2)≤0 已知f(x+y)=f(x)+f(y)+2xy,求f(0)