已知函数f(x)=sin²ωx+√3cosωxcos(π/2-ωX)ω>0 且函数y=f(x)的图像相邻两条对称轴之间的距离为π/2 1.求f(π/6)的值 2.若函数f(kπ+π/12)(K>0)在区间【-π/6,π/3】上单调递减,求k的取值范

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 16:42:14
已知函数f(x)=sin²ωx+√3cosωxcos(π/2-ωX)ω>0 且函数y=f(x)的图像相邻两条对称轴之间的距离为π/2 1.求f(π/6)的值 2.若函数f(kπ+π/12)(K>0)在区间【-π/6,π/3】上单调递减,求k的取值范
xWNG~*UkV_ h+!URT.mMk ƭ`g+1 TrkfΙo9sl6ⅵv<3dRNV_ž^6lLFψ^%{81[bxMKt/sGkgcnб[ mIb$=#x*AQ#}BL<>Uf[C1VV.B@O0;KD`iEgpIgD'J~sỀ:ׂx{04j1#Hhr9$LmcSf qFd v܇<1mq "]Z;:j@V0˽B|FrL}F z ?䈓(DHPb_[kBѵ\hP;0J"1OyUf`pԋ98!ƵTmW"1@j |}^=zI ' 1) O-EcTRXWr[rc$ PWD?OrOy~v Y兄s86$>&#IH oJIZr*R ](3cmm/NaYKG̤{k6O$zO9KLwiZ樑҅0/κUI֪dD^# /qXݢL5ݢ?m>@dUaLFC]aϙDńDXEzTI"놈B$d>]m\vFWY/Ys*q7S$RnY "(0"8^uVXO\^D63H˭{uLyOi<ەqlI+~IpN,]hÄC;Ih1Ƹ̯W[n~@7#k3kj!;hRt b~xgXƁ] DnVFnPjgV͊]ߡS%xQwd ;ư-4Wπm'=mQ&Q&Q.#Z!×}kbgM&!qrBC56!< 6W'1[yk1^b_]YK\:?Zso~y˼إl׾*Yeb_aA

已知函数f(x)=sin²ωx+√3cosωxcos(π/2-ωX)ω>0 且函数y=f(x)的图像相邻两条对称轴之间的距离为π/2 1.求f(π/6)的值 2.若函数f(kπ+π/12)(K>0)在区间【-π/6,π/3】上单调递减,求k的取值范
已知函数f(x)=sin²ωx+√3cosωxcos(π/2-ωX)ω>0 且函数y=f(x)的图像相邻两条对称轴之间的距离为π/2 1.求f(π/6)的值 2.若函数f(kπ+π/12)(K>0)在区间【-π/6,π/3】上单调递减,求k的取值范围

已知函数f(x)=sin²ωx+√3cosωxcos(π/2-ωX)ω>0 且函数y=f(x)的图像相邻两条对称轴之间的距离为π/2 1.求f(π/6)的值 2.若函数f(kπ+π/12)(K>0)在区间【-π/6,π/3】上单调递减,求k的取值范
cos2ωx = 1-2 sin²ωx
f(x)=sin²ωx+√3cosωxcos(π/2-ωX)
= (1-cos2ωx)/2 + √3cosωxsinωx
=1- (1/2)cos2ωx + (√3/2)sin2ωx
=1 + sin2ωx *(√3/2) - cos2ωx * (1/2)
=1 + sin(2ωx-π/6) 【sin-=sincos-cossin】
相邻两条对称轴之间的距离为π/2,得周期=π/2 * 4 = 2π
所以ω=1/2, f(x)=1 + sin(x-π/6)
∴f(π/6)=1
f(kπ+π/12)= 1 + sin (kπ+π/12-π/6) = 1 + sin (kπ-π/12)
这是常数啊,问的应该是:f(kX+π/12)吧

cos(π/2-ωX)=sin(ωX) 所以f(x)=[1-cos(2wx)]/2+√3/2(sin(2ωx))=sin(2wx-π/6)+1/2
函数f(x)相邻两条对称轴之间的距离为π/2,则函数的周期是π。
则w=1 f(x)=sin(2x-π/6) +1/2 f(π/6)=1
(2)
f(kπ+π/12)=sin(2kπx)+1/2
T=2π/2kπ=1/k 则T/2>=(π/6+π/3)
0

【参考答案】

(1)f(x)=sin²ωx+√3cosωxcos(π/2-ωX)
=sin²wx+√3 coswxsinwx
=(1/2)-(1/2)cos2wx+(√3/2)sin2wx
=sin2wxcos(π/6)-cos2wxsin(π/6)+(1/2)
=sin(2wx- π/6)+(1/2)
∵f(x)图像...

全部展开

【参考答案】

(1)f(x)=sin²ωx+√3cosωxcos(π/2-ωX)
=sin²wx+√3 coswxsinwx
=(1/2)-(1/2)cos2wx+(√3/2)sin2wx
=sin2wxcos(π/6)-cos2wxsin(π/6)+(1/2)
=sin(2wx- π/6)+(1/2)
∵f(x)图像相邻两条对称轴距离是π/2
即 f(x)周期是2× π/2=π
∴ π=2π/(2w)=π/w
解得 w=1
∴f(π/6)=sin(2x π/6- π/6)+(1/2)=1

(2)把x=kπ+ π/12带入f(x)解析式,化简即可。

收起

解:
1
cos(π/2-wx)=sin[π/2-(π/2-wx)]=sinwx
两倍角公式:sin²wx=(1-cos2wx)/2
f(x)
=sin²wx+√3coswxcos(π/2-wx)
=(1-cos2wx)/2+√3coswxsinwx
=1/2-1/2×cos2wx+√3/2×sin2wx
=...

全部展开

解:
1
cos(π/2-wx)=sin[π/2-(π/2-wx)]=sinwx
两倍角公式:sin²wx=(1-cos2wx)/2
f(x)
=sin²wx+√3coswxcos(π/2-wx)
=(1-cos2wx)/2+√3coswxsinwx
=1/2-1/2×cos2wx+√3/2×sin2wx
=1/2+cosπ/6sin2wx-sinπ/6cos2wx
=1/2+sin(2wx-π/6)
两条对称轴之间的距离亦即半个周期,所以周期为π/2×2=π
所以T=2π/2w=π 解得 w=1 (w>0)
所以 f(x)=1/2+sin(2x-π/6)
f(π/6)=1/2+sin(2×π/6-π/6)=1/2+sin(π/6)=1/2×1/2=1
2 应该是 f(kx+π/12)
∴f(kx+π/12)
=1/2+sin(2kx+2×π/12-π/6)
=1/2+sin2kx
①sin2kx 的半周期为2π/2k÷2=π/(2k)
依题意 [-π/6,π/3]区间距离要小于半周期
所以π/3-(-π/6)=π/2<π/(2k) (其中k>0)
解得 k<1
所以0
由①得,题目有误,应该是在区间【-π/6,π/3】上单调增!!<<<< 正弦函数性质得知:
在跨越零点时,左负右正,所以题目应该是在区间【-π/6,π/3】上单调增.
1/2+sin2kx
一般性的其在[-π/2,π/2]上单调递增
∴-π/2<2kx<π/2
解得 -π/(4k)又∵其在[-π/6,π/3]上单调递增
∴-π/(4k)<-π/6得 4k<6 且 3>4k
k<3/2 且 k<3/4
综合得
0不懂可追问 有帮助请采纳 祝你学习进步 谢谢

收起