已知a,b,c都是正数,a+b+c=1,设t=(根号3a+2)+(根号3b+2)+( 根号3c+2),求证:t≤6貌似是题目错了只能证 t<6
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 00:41:51
xRN@NvAvoPԔDF@BLLE
>Lyܘhzs{[nha;,ꌣǨ-d#x4wj!G9I Y<>=tO:ꦻ[qcf.W1
5] El#cr4g4z
8M!u)C2gUB3*edHrU)J"<7Y%AsX}s->3`U)& LDŽL8vr!V\=:afHv\J,HLaCVBIYMdQ]Σ~=
已知a,b,c都是正数,a+b+c=1,设t=(根号3a+2)+(根号3b+2)+( 根号3c+2),求证:t≤6貌似是题目错了只能证 t<6
已知a,b,c都是正数,a+b+c=1,设t=(根号3a+2)+(根号3b+2)+( 根号3c+2),求证:t≤6
貌似是题目错了只能证 t<6
已知a,b,c都是正数,a+b+c=1,设t=(根号3a+2)+(根号3b+2)+( 根号3c+2),求证:t≤6貌似是题目错了只能证 t<6
证:
已知a>0,b>0,c>0,a+b+c=1
设X=√(3a+2),Y=√(3b+2),Z=√(3c+2)
则t=X+Y+Z
X^2=(3a+2),Y^2=(3b+2),Z^2=(3c+2)
X^2+Y^2+Z^2=(3a+2)+(3b+2)+(3c+2)=3*(a+b+c)+6=9
∵(X-Y)^2≥0,(Y-Z)^2≥0,(X-Z)^2≥0
∴2XY≤X^2+Y^2,2YZ≤Y^2+Z^2,2XZ≤X^2+Z^2
t=X+Y+Z
t^2=X^2+Y^2+Z^2+(2XY)+(2YZ)+(2XZ)
≤X^2+Y^2+Z^2+(X^2+Y^2)+(Y^2+Z^2)+(X^2+Z^2)
=3*(X^2+Y^2+Z^2)=3*9=27
即t^2≤27
故t的最大值=√27=3√3
已知a、b、c都是正数,且a+b+c=1,证明:1-2b(a+c)+b2
已知a,b,c,d都是正数,且a/b
已知a,b,c都是正数,且3a=4b=6c,则已知a,b,c都是正数,且3a=4b=6c,则2/c=1/a+2/b 为什么
已知a,b,c都是正数,求证:(a+b)(b+c)(c+a)≥8abc
已知a、b、c都是正数,求证:(a+b)(b+c)(c+a)≥ 8abc
已知abc都是正数,且a+b+c=1 求证:(1-a)(1-b)(1-c)≥8abc
如果a b c都是正数,那么(a+b)(b+c)(c+a)>=8abc
已知abc都是正数,求证:1/2a+1/2b+1/2c>=1/(a+b)+1/(a+c)+1/(b+c)
已知a,b,c都是正数,且a+b+c=1.求证:(1-a)(1-b)(1-c)>=8abc
已知a,b,c都是正数,且a+2b+c=1,则1/a+1/b+1/c的最小值是多少?
已知a,b,c都是正数,a+b+c=1,设t=(根号3a+2)+(根号3b+2)+( 根号3c+2),求证:t
基本不等式应用的证明问题1已知a b c都是正数,求证:(a+b)(b+c)(c+a)>=8abc
已知A,B,C都是负数,并且|X-A|+|Y-B|+|Z-C|=0,则XYZ是?A负数 B非负数 C正数 D非正数
a,b,c都是正数,ab+bc+ca=1则a+b+c
已知abc都是正数,且a+b+c=1,求(1-c)/(2a+1)的取值范围
已知a,b,c都是正数,a+b+c=1,求u=(3a^2-a)/(1+a^2)+(3b^2-b)/(1+b^2)+(3c^2-c)/(1+c^2)的最小值,
已知abc都是不等于0的有理数,求|a|/a+|b|/b+|c|/c急我们可以用分析来解题:1、如果a、b、c都是正数时:|a|/a+|b|/b+|c|/c = 32、如果其中一个是负数,两个是正数时:|a|/a+|b|/b+|c|/c = (-1)+ 1 + 1 = 13、
谁会已知a、b、c都是正数,证明(a+b)(b+c)(c+a)大于等于8abc