已知圆o:x^2+y^2=4和点(1,a),若a=√2,过点M的圆的两条弦AC,BD互相垂直,求AC+BD的最大值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 03:39:30
已知圆o:x^2+y^2=4和点(1,a),若a=√2,过点M的圆的两条弦AC,BD互相垂直,求AC+BD的最大值
已知圆o:x^2+y^2=4和点(1,a),若a=√2,过点M的圆的两条弦AC,BD互相垂直,求AC+BD的最大值
已知圆o:x^2+y^2=4和点(1,a),若a=√2,过点M的圆的两条弦AC,BD互相垂直,求AC+BD的最大值
如图,作OE⊥AC、OF⊥BD,分别连接OB、OM、OC.
则:OE²=OC²-CE², OF²=ME²=OM²-OE²=OM²-(OC²-CE²)=OM²+CE²-OC²,
BF²=OB²-OF²=OB²-(OM²+CE²-OC²)=OB²+OC²-OM²-CE²=2(OB)²-OM²-CE².
由题意知:OB=2、 OM=√3 ,故:BF=√(5-CE²).
则:AC+BD=2CE+2BF=2(CE+BF)=2[CE+√(5-CE²)]
由不等式x+y≤√[2(x²+y²)]得:CE+√(5-CE²)≤√[2(CE²+5-CE²)=√10.
所以:AC+BD≤2√10,即AC+BD的最大值为2√10.
其中一条弦过圆心,AC+BD最大
o(0,0)
设OM所在弦为AC,则AC=2(半径)
BD=2√3
AC+BD=2(1+√3)
自己画圆看一下,就知道√3怎么来的