数列{an}的通项an=n(cosnΠ/3^2-sinnΠ/3),其前n项和为Sn,则S30=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 13:49:54
数列{an}的通项an=n(cosnΠ/3^2-sinnΠ/3),其前n项和为Sn,则S30=
数列{an}的通项an=n(cosnΠ/3^2-sinnΠ/3),其前n项和为Sn,则S30=
数列{an}的通项an=n(cosnΠ/3^2-sinnΠ/3),其前n项和为Sn,则S30=
Bn=cos²nΠ/3 - sinnΠ/3 具有周期性,周期为6
n=1,B1=1/4-√3/2
n=2,B2=1/4-√3/2
n=3,B3=1
n=4,B4=1/4+√3/2
n=5,B5=1/4+√3/2
n=6,B6=1
共有5个周期,原数列可看作6个等差数列.
S30=5(1+25)*(1/4-√3/2)/2+5(2+26)*(1/4-√3/2)/2
+5(3+27)/2+5(4+28)*(1/4+√3/2)/2+5(5+29)*(1/4+√3/2)/2 +5(6+30)/2
=240+15√3
an=n²(cos²nπ/3-sin²nπ/3)=n^2*cos(2nπ/3)(二倍角公式)
cos(2π/3)=-1/2
cos(4π/3)=-1/2
cos(6π/3)=1
所以a(3k-2)+a(3k-1)+a(3k)
=(3k-2)^2*(-1/2)+(3k-1)^2*(-1/2)+(3k)^2*1
=9k-5/...
全部展开
an=n²(cos²nπ/3-sin²nπ/3)=n^2*cos(2nπ/3)(二倍角公式)
cos(2π/3)=-1/2
cos(4π/3)=-1/2
cos(6π/3)=1
所以a(3k-2)+a(3k-1)+a(3k)
=(3k-2)^2*(-1/2)+(3k-1)^2*(-1/2)+(3k)^2*1
=9k-5/2
所以S30=a1+a2+...+a30
=(a1+a2+a3)+(a4+a5+a6)+...+(a28+a29+a30)
=(9*1-5/2)+(9*2-5/2)+...+(9*10-5/2)
=9*(1+2+...+10)-10*5/2
=9*10*11/2-25
=470
收起
an=5n/4-n(sinnπ/3+1/2)²,sinnπ/3周期√3/2,√3/2,0,-√3/2,-√3/2,0,S30中有5个周期,
S30=5/4(30*31/2)-{[2+(5-1)*6]*5/2*(1+√3)²/4+[4+(5-1)*6]*5/2*(1+√3)²/4+[6+(5-1)*6]*5/2*(1)²/4+[8+(5-1)*6]*5...
全部展开
an=5n/4-n(sinnπ/3+1/2)²,sinnπ/3周期√3/2,√3/2,0,-√3/2,-√3/2,0,S30中有5个周期,
S30=5/4(30*31/2)-{[2+(5-1)*6]*5/2*(1+√3)²/4+[4+(5-1)*6]*5/2*(1+√3)²/4+[6+(5-1)*6]*5/2*(1)²/4+[8+(5-1)*6]*5/2*(1-√3)²/4+[10+(5-1)*6]*5/2*(1-√3)²/4+[12+(5-1)*6]*5/2*(1)²/4
=2325/4-[(2+√3)65/2+(2+√3)70/2+75/4+(2-√3)80/2+(2-√3)85/2+90/4]=2325/4-1365/4+15√3=240+15√3。
收起