求不定积分∫dx/根号下(1-2x^2),

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:29:23
求不定积分∫dx/根号下(1-2x^2),
xJ@_e(--M'to!*&6#WB *n\u%BT\P|ߡXu+M®9g9čoGg{n=ve .F'e@5R~; ;n6On.#Ru!aD:Jj>^MD; %~0GmC&FSbZ"JqbX!$L 1)iD"uB}ΉF`*Ym3PL,V=g 1@eQ̥/Xl(d383du$h׈AϴU V0v{E˫@|>^9 $$l!$v'_2"JtHs~g p-z*owDvQi%բY2T?iU.9Ø  䉓aA<1~~FFEH

求不定积分∫dx/根号下(1-2x^2),
求不定积分∫dx/根号下(1-2x^2),

求不定积分∫dx/根号下(1-2x^2),

答:
∫ [1/√(1-2x^2)] dx 设x=(√2/2)sint,-π/2=∫ (1/cost) d [(√2/2)sint ]
=(√2/2) ∫ (cost/cost) dt
=(√2/2) t +C
=(√2/2)arcsin(√2x)+C

解:
设x=sint/根号2,t=arcsin根号2x,dx=1/根号2costdt
∫1/根号2costdt/cost
=∫1/根号2dt
=1/根号2t
=1/根号2arcsin根号2x