在三角形ABC中,证明:A方+B方+C方大于等于4倍的根3S(a,b,c为三角形三边,s为三角形面积)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 22:03:06
在三角形ABC中,证明:A方+B方+C方大于等于4倍的根3S(a,b,c为三角形三边,s为三角形面积)
x){:gœ/Ozwku^o|6YϦv@Ov=_ $M6>lN{:ut7 طSYEϗ&H@/8?O,{ں`¢DM "5cunV#Q;I;YSHϗzs3]@G|:iÞ';z 7F7F 1 M'

在三角形ABC中,证明:A方+B方+C方大于等于4倍的根3S(a,b,c为三角形三边,s为三角形面积)
在三角形ABC中,证明:A方+B方+C方大于等于4倍的根3S(a,b,c为三角形三边,s为三角形面积)

在三角形ABC中,证明:A方+B方+C方大于等于4倍的根3S(a,b,c为三角形三边,s为三角形面积)
由海伦公式S=sqrt[p(p-a)(p-b)(p-c)],其中p=(a+b+c)/2,sqrt表示平方根.
由均值不等式
sqrt3[(p-a)(p-b)(p-c)]