已知:xyz=1,x+y+z=2,x^2+y^2+z^2=16求1/(xy+2z)+1/(zy+2x)+1/(xz+2y)的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 14:31:56
x1n0EcRQ/@zhSQsO9@du_"AHUm=~Ș[R &`^sQcH;bL6T/i{ө.3&Rfs>l#g,2AR^-B2q!Hc舮.B庸X'ү~qVP/yoT_Nu
已知:xyz=1,x+y+z=2,x^2+y^2+z^2=16求1/(xy+2z)+1/(zy+2x)+1/(xz+2y)的值
已知:xyz=1,x+y+z=2,x^2+y^2+z^2=16求1/(xy+2z)+1/(zy+2x)+1/(xz+2y)的值
已知:xyz=1,x+y+z=2,x^2+y^2+z^2=16求1/(xy+2z)+1/(zy+2x)+1/(xz+2y)的值
xy+2z=xy+4-2x-2y=(x-2)(y-2).
同理,yz+2x=(y-2)(z-2),zx+2y=(z-2)(x-2).
4=(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx)=16+2(xy+yz+zx),
xy+yz+zx=-6.
(x-2)(y-2)(z-2)=xyz-2(xy+yz+zx)+4(x+y+z)-8=13.
原式=[(x-2)+(y-2)+(z-2)]/(x-2)(y-2)(z-2)
=-4/13.
已知x,y,z>0,xyz(x+y+z)=1,求证(x+y)(x+z)>=2
已知x^2+y^2+z^2=1,求证x+y+z-2xyz
x+y+z+2=xyz,x,y,z.为正实数,证明:xyz(x-1)(y-1)(z-1)
已知x,y,z都是正数,且xyz=1,求证:x^2/(y+z)+y^2/(x+z)+z^2/(x+y)≥3/2
已知实数xyz满足x/(x+1)=y/(y+2)=z/(z+3)=(x+y+z)/3求x+y+z的值
已知x、y、z满足x+y+z=xyz,求证:x(1-y^2)(1-z^2)+y(1-x^2)(1-z^2)+z(1-x^2)(1-y^2)=4xyz
已知x+y+z=0,xyz=2,求|x|+|y|+|z|的最小值
正数XYZ满足(X+Y)(X+Z)=2则XYZ(X+Y+Z)最大值
已知xyz为正实数,且x+2y+z=2,求xyz最大值
先化简再求值3xyz+2(x^2y+y^2z-xyz)-xyz+2z^2x x=1 y= -1 z=2
先化简,再求值:3xyz+2(x²y+y²z-xyz)-xyz+2z²x,其中x=1、y=-1、z=2;
已知xyz≥0,x+y+z=1,化简x(2y-z)/(1+x+3y)+y(2z-x) /(1+y+3z) +z(2x-y)/(1+z+3x)
已知 x,y,z都是正实数,且 x+y+z=xyz 证明 (y+x)/z+(y+z)/x+(z+x)/y≥2(1/x+1/y+1/z)^2
已知xyz满足(x/y+z)+(y/z+x)+(z/x+y)=1,则代数式(x^2/y+z)+(y^2/z+x)+z^2/x+y的值为
已知x:y:z=3:2:1,且x+y+z=12,则xyz=?
已知x:y:z=2:3:4,且x+y+z=1/12,求xyz的值
已知x+y+z=0,xyz=1,求证:x,y,z中必有一个大于2/3.
已知 根号x +根号y-1+根号z-2 =二分之一(x+y+z),求xyz的值