证明一两任意事件AB相互独立 且A属于B 则P(A)=0或P(B)=1 为什么P(B)=1 二若事件A与它自己独立则P(A)=0或二若事件A与它自己独立则P(A)=0或1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:41:38
xՒ]N@24 >tlA`n "F 6;3[Tc>wLn5-; #kL!.'65)e=af;Zvge!(g.zX+`^ǦTxuVU*Og6R\?Uesi
w`hFD"J5إ3ndOKZ`(Ke:$kC1cэE(\&K ~Q LK{-iڋ+;:s?)qJ8//f`[\SA,ftx9J>[|c67+M|Xǧ ш4.UׂZxB0ŬfD
证明一两任意事件AB相互独立 且A属于B 则P(A)=0或P(B)=1 为什么P(B)=1 二若事件A与它自己独立则P(A)=0或二若事件A与它自己独立则P(A)=0或1
证明一两任意事件AB相互独立 且A属于B 则P(A)=0或P(B)=1 为什么P(B)=1 二若事件A与它自己独立则P(A)=0或
二若事件A与它自己独立则P(A)=0或1
证明一两任意事件AB相互独立 且A属于B 则P(A)=0或P(B)=1 为什么P(B)=1 二若事件A与它自己独立则P(A)=0或二若事件A与它自己独立则P(A)=0或1
1)若AB相互独立 则P(AB) = P(A)P(B)
A属于B 则AB = A
那么P(AB)=P(A)=P(A)P(B)
所以P(A)(1-P(B))=0
则P(A)=0或P(B)=1
2) 若事件A与它自己独立 代入第一题 AA显然 = A
有P(A)=0或P(A)=1
这2道题目证明不难,难的是理解为什么会存在这样的事实,对吧.
当时我也想了很久
实际上AB相互独立,且P(A) P(B)均不为0或1时,等价于AB有交集
这也是可以证明的.同样是证明容易,理解难.
证明一两任意事件AB相互独立 且A属于B 则P(A)=0或P(B)=1 为什么P(B)=1 二若事件A与它自己独立则P(A)=0或二若事件A与它自己独立则P(A)=0或1
设事件a,b,c总体相互独立,证明a+b,ab,a-b都和c相互独立
设事件A的概率P(A)=0,证明对于任意另一事件B,有A,B相互独立
已知事件a的概率p(a)=0,是任意一个事件,证明a,b相互独立
证明题:设随机事件A,B相互独立,试证:A,B也相互独立.
设事件A,B,C相互独立,试证明A并B与C相互独立
已知事件A与B相互独立,证明对立事件A'与对立事件B'相互独立
A和B两个随机事件,证明命题:对任意正概率随机事件C有P(AB|C)=P(A|C)*P(B|C),则A与B相互独立
概率论证明题如果事件A B 相互独立,那么 A的对立事件,B 也相互独立
证明如果A与B为相互独立事件,那么A与B补也为相互独立事件
设A,B,C是三个相互独立的随机事件,证明A交B的逆与C独立AB,B上有一横
证明事件A和B相互独立证明:若P(B|A(—))=P(B|A) ,则事件A与B相互独立
设事件A,B,C互相独立,试证明事件A的逆,B,C相互独立
为什么事件A,B相互独立呢?
已知事件A与B为相互独立事件,则P(AB)=
概率论问题:事件A与事件B相互独立,且P(AB)=0.9,P(B)=0.4,则P(A)=(?)
相互独立事件A、B设事件A B相互独立,且P(A)>0,P(B)>0得出P(A-B)=P(A)P(非B)
若事件A和B 相互独立 为什么 P(AB)+ P(AB) =P(A)第二个B上面有一横算了 干脆换个说法 若事件A和B 相互独立 现在要证明A和B'也相互独立 答案出现的第一个等式 P(AB)+ P(AB') = P(A)是怎么来的