∫1/(1+√x) dx 用第二类换元法求不定积分过程,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 14:55:03
∫1/(1+√x) dx 用第二类换元法求不定积分过程,
x){ԱPCG*THPx>e5kyqEO[mlcӓOz|ӎֱ۟I*ҧ;*% ݶ%:O;f8#pJmikTRu}j1X Hʨ"W(kihjiB5$RJtAQQN^ Pc3Td)XĀH$A 6

∫1/(1+√x) dx 用第二类换元法求不定积分过程,
∫1/(1+√x) dx 用第二类换元法求不定积分过程,

∫1/(1+√x) dx 用第二类换元法求不定积分过程,
令√x=t,则x=t^2
dx=d(t^2)=2tdt
∴原式=∫1/(1+√x) dx
=∫2t/(1+t) dt
=∫(2(t+1)-2)/(1+t)dt
=∫2dt-∫2/(1+t)dt
=2t-2ln|t+1|+C
=2√x-2ln|√x+1|+C

2√x-2ln|√x+1|+C