1.把面值50元的人民币换成零钱,现有足够的五元,两元,一元,共有几种换法.2.分母是2000的最简真分数有多少个,它们在和是多少?3.写1个1,2个2,3个3,4个4…100个100,至少取多少个数才能保证有50个相

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 01:35:23
1.把面值50元的人民币换成零钱,现有足够的五元,两元,一元,共有几种换法.2.分母是2000的最简真分数有多少个,它们在和是多少?3.写1个1,2个2,3个3,4个4…100个100,至少取多少个数才能保证有50个相
xVKsV+"tB1$g]'>i7Yl ؉Wdm N VW+~!a&]tՉ~|ξ~,toeetp"e₿z^{CvʉWZ]v4<=TL)9%#ctS%U޷L0 ;)v\pr| 1˥{44>Z?0 3 -X#d\ nAК1_Syȿ?Ƀ\_#DF7?7; pUpY\ɟS { AoZ.dmCS6g-8^C>*^B9psB@s({ ۂ=`yc*o߱9>l/MW?v{K6q,]ӯdP _%|Ο5ؖH<+``4'5gu([n+;)n[yެBM-h4+׫p@ʔI $)6~>zxiOuY,Ba!98P0CCgt- 0hք*0\2tb59AQ6f`W$l2")IM\I34Ɇ8` #NJjD[[Nd60#CFÚMOh SDPV̭tsiĸ$L=xxQa#ƜG;/B45z AL.WZ :e0` B>J9S@a D2(K2Gsm{°Oah"OCUЪ݁`.hw. L`aI1udR'Q bmjcfp&RUx5OT(*VR^=؄+BIRƴlLC@~ui`߰&fiۚ xaYڐԀot/+[bL==yS ݣZ0\{ ZU^n^J+ p|183꟭pelL’G}h#u g4QR7Z[6E'}#Kn*2El4(ʕ(\MSC,Z_]+c ٘>!!Onz[py YXeewl\-=2P{L0!ʻIKDkx`Y)q 5\enSHxΐ\A9 c, y~F\As) L@hg=OA\ \ !Zg5xɥ%:vy0wj&1vWxGeOk5L=4El w ]d̜eg:L|V">ӭhg%nFs

1.把面值50元的人民币换成零钱,现有足够的五元,两元,一元,共有几种换法.2.分母是2000的最简真分数有多少个,它们在和是多少?3.写1个1,2个2,3个3,4个4…100个100,至少取多少个数才能保证有50个相
1.把面值50元的人民币换成零钱,现有足够的五元,两元,一元,共有几种换法.
2.分母是2000的最简真分数有多少个,它们在和是多少?
3.写1个1,2个2,3个3,4个4…100个100,至少取多少个数才能保证有50个相同的数
4.甲乙两人从相距360米的A、B两地同时出发,相向而行,不断往返A、B两地,甲速度75米/分钟,乙速度90米/分钟,当两人第一次同时回到各自的出发地时,甲走了多少米?
5.纯循环小数0.abc(abc上打点),分子和分母和是58,这个循环小数是______.
6.1-9995中所有自然数的数字之和为______.
7.x/7化成小数后,小数点后第n位的数字之和是2010,当x=____时,n=____;当x=____时,n=____.

1.把面值50元的人民币换成零钱,现有足够的五元,两元,一元,共有几种换法.2.分母是2000的最简真分数有多少个,它们在和是多少?3.写1个1,2个2,3个3,4个4…100个100,至少取多少个数才能保证有50个相
1. 首先考虑5元张数进行分类.
若5元10张,只有1种.
若5元9张,凑另外5元的方法按照2元张数分类,2元最多用2张,或者用1张,也可以不用,因此会有3种.
若5元8张,凑另外10元的方法按照2元张数分类,2元最多用5张,或者用4张、3张、2张、1张,也可以不用,因
此会有6种.
若5元7张,凑另外15元会有8种(理由同上,按照2元使用张数分类)
…………
一直考虑到5元一张都不用,则最多用25张2元的,最少则2元的都不用,会有26种.
总数:1+3+6+8+11+13+16+18+21+23+26=146
2. 从1到1999的自然数种去掉2和5的倍数.
2的倍数有999个,5的倍数有399个.既是2的倍数,也是5的倍数的有199个.
因此,是2的倍数或者是5的倍数的有999+399-199=1199个.
其它自然数有1999-1199=800个.可以组成800个最简真分数.
3. 最坏的情况是取了所有的1到49,然后50到100的数各取了49个.一共取了:
(1+2+3+……+49)+49*51=3724个,这时还没有出现50个重复的数.再来一个,就是3725个就一定会有了.
4. 返回需要走720米.
甲回到原地一次需要720 /75=9.6分钟,乙则需要720/90=8分钟.
因此,到48分钟时,甲走了5个来回,乙走了6个来回,是第一次两人都回到起点.
甲走了75*48=3600米.
5. 这个分数写成简单的分数形式是ABC/999,经过约分后分子与分母和为58.
分析999的质因数,999=3*3*3*37.因此,三位数ABC必须与999共同拥有3个3的因数(自行试算).约去3个3
后将得到分数21/37.则未约分前的分数是567/999.循环小数是0.567(567是循环节)
6. 如果是1到9999的数字之和,可以这样计算
1在个位、十位、百位、千位分别出现1000次,共出现4000次.
2、3、4…… 9每个数字都一样出现了4000次.
所以数字和是(1+2+3+…… +9)*4000=180000
9996到9999的数字和:9*13+6+7+8=138
最后的和是:180000-138=179862
7. X的值从1到6,所得到的小数的第一个循环节分别如下:(无论哪种,每个循环节的数字和都是27)
0.142857
0.285714
0.428571
0.571428
0.714285
0.857142
当第N位的和是2010时,一定有2010/27=74…… 12(74个循环节,还需要后面的若干数字加得12)
经试验,0.571428前两位加可以得到12,答案一:X为4时,N=74*6+2=446
0.714285前三位加也可以得到12,答案二:X为5时,N=74*6+3=447

某商店要把面值100元的一张人民币换成零钱,现有足够面值为50元,20元,10元的人民币,则共有几种换法? 要把一张面值为十元的人民币换成零钱,现有足够的面值为1元,2元的人民币,那么共有多少种换法? 要把面值为10元的一张人民币换成零钱.现有足够的面值为2元、1元的人民币,则有几种换法? 要把一张面值为5元的人民币换成零钱,现有足够的面值为2元1元5角的人民币那么共有几种换法? 要把一张面值100元的人民币换成零钱,现有足够的面值为20元、10元地人民币,那么共有多少种换法列方程 妈妈要把一张一百元的人民币换成零钱,现有足够的面值为10.20.50元的人民币.问共有几种不同的换法? 要把一张面值为十元的人民币换成零钱,现有足够的面值为二元一元的人民币,则换法共有几种? 现有足够的1元,2元的人民币,需要把面值为10元人民币换成零钱,请你设计几种兑换方案. 把一张面值为1元的人民币换成零钱,现有足够数量5角、2角、1角的人民币,有多少种不同的换法? 把面值为10元的人民币换成零钱现有足够的面值为5元2元1元的人民币那么共有()种不同的换法 要把面值为10元的一张人民币换成零钱,现有足够的面值为2元,5元,1元的人民币,那么有__种换法 张老师欲把一张面值为100元的人民币换成零钱,现有足够的面值为20元和10元的人民币,则有多少种解法? 一张面值为5元的人民币换成零钱,现有2元,1元的足够面值,则换法共有几种? 要把一张面值为10元的人民币换成零钱,现在有足够的人民币面值为1元、2元,则共有换法几种? 要把一张面值为10元的人民币换成零钱,现在有足够的人民币面值为1元、5元,则共有换法几种? 答出来送十点财富值 要把十元的人民币i换成零钱,现有足够的面值为两元,一元的人民币.求共有几种换法?(只要答案)中间 人民币i i 可以忽略,是我不小心打的 要把一张面值为10远的人民币换成零钱,先有足够的面值为2元,一元的人民币,那么有__种换法 麻烦解答下哈.1.要把一张面值为5元的人民币换成零钱,现有足够的面值为2元,1元,5角的人民币,那么共有的换法种数为( )种.2.獐每个18斤,兔每个3斤,斑鸠每个4两,獐 兔 斑鸠共99个 共100斤(1斤