设y=(ax+b)/(cx+d),a、b、c、d都是有理数,x是无理数,求证:(1)当bc=ad时,y是有理数(2)当bc≠ad时,y是无理数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:34:45
设y=(ax+b)/(cx+d),a、b、c、d都是有理数,x是无理数,求证:(1)当bc=ad时,y是有理数(2)当bc≠ad时,y是无理数
xQMK0+9lv9KK{"Kź""a4mO NjZxÐ̼yo&cOgV!u{J|n~ G †RGOd]&E4 -Me^+ݟ^$-X_\U#Q1U' e#ƈ8x槠#⡈U.0=Ypc냖,qTfi*=S3WVnF-0/ԙx`-nXouo7 |

设y=(ax+b)/(cx+d),a、b、c、d都是有理数,x是无理数,求证:(1)当bc=ad时,y是有理数(2)当bc≠ad时,y是无理数
设y=(ax+b)/(cx+d),a、b、c、d都是有理数,x是无理数,求证:(1)当bc=ad时,y是有理数
(2)当bc≠ad时,y是无理数

设y=(ax+b)/(cx+d),a、b、c、d都是有理数,x是无理数,求证:(1)当bc=ad时,y是有理数(2)当bc≠ad时,y是无理数
当bc = ad, y = (ax+b)/(cx+d) = a/c = b/d (c, d中至少有一个非零, 故a/c与b/d中至少有一个有意义).
当bc ≠ ad, 可解得x = (b-dy)/(cy-a), 若y是有理数, 可得x是有理数, 与条件矛盾.
故y是无理数.

当bc = ad, y = (ax+b)/(cx+d) = a/c = b/d (c, d中至少有一个非零, 故a/c与b/d中至少有一个有意义).
当bc ≠ ad, 可解得x = (b-dy)/(cy-a), 若y是有理数, 可得x是有理数, 与条件矛盾.
故y是无理数.