已知a,b,c是正实数,若3a+3b+2c=3,求(a+b)(b+c)(c+a)的最大值,用高中的不等式或柯西不等式解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:14:44
已知a,b,c是正实数,若3a+3b+2c=3,求(a+b)(b+c)(c+a)的最大值,用高中的不等式或柯西不等式解
xŐOj@ůad\frK H"AB["uTi{q+/F#{7/#pL1 W3< E͡HՇ"E {I[0_wݦH0]o㔋Y|Gh A JIqloL\ʐ+ԃwN9H P?-_-}U'֐ܹe/X]G\2

已知a,b,c是正实数,若3a+3b+2c=3,求(a+b)(b+c)(c+a)的最大值,用高中的不等式或柯西不等式解
已知a,b,c是正实数,若3a+3b+2c=3,求(a+b)(b+c)(c+a)的最大值,用高中的不等式或柯西不等式解

已知a,b,c是正实数,若3a+3b+2c=3,求(a+b)(b+c)(c+a)的最大值,用高中的不等式或柯西不等式解
3a+3b+2c=2(a+b)+(b+c)+(a+c)=3
≥3[2(a+b)(b+c)(a+c)]^(1/3)
得(a+b)(b+c)(c+a)≤1/2,当2(a+b)=b+c=c+a=1,即a=b=1/4,c=3/4时等号成立