已知:如图,在△ABC中,AB=AC,CD是边AB上的高.求证:∠BCD=1/2∠A

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 04:30:44
已知:如图,在△ABC中,AB=AC,CD是边AB上的高.求证:∠BCD=1/2∠A
xTmOP+dH[Z]I[ KiQئ0qYOJԁS/88ub.O!T>vJpsssn8=~?\5n/hcD%vD^RzxyQDv~UD)S$!$e89>Q^ș ?|2OfRSSGt"5brR}SRěDRS  _bI$&J8Jx"Gcte(G93JJ 8*Er$gBAEV(ѠRʆ|ҐJN0#(С‚@1*1A4s\]Dz$|/mN͋R5 q*W͜~_n{ygx O#Ynř BY\+٢V۱<68N 5꾃8y ?v] '{"yA-E,8zA/1*j,xF_8}Xk{Q0IæoQ%Q7 Q3| V3Fο|h;q25! gn(`lؠ'Zdh ! (KѦS0O/I/Z #\,.^6u~}x*}q*à۹ē}0 uZ{3vo #]rZ]ZB#ώ!iñ~3ań; {XG;G2\0x;+U4վ_^̡o6n/V{xloAOkg;F`!j" x'8kZ AD\Z& )֚/";wwܪMT?4

已知:如图,在△ABC中,AB=AC,CD是边AB上的高.求证:∠BCD=1/2∠A
已知:如图,在△ABC中,AB=AC,CD是边AB上的高.求证:∠BCD=1/2∠A

已知:如图,在△ABC中,AB=AC,CD是边AB上的高.求证:∠BCD=1/2∠A
∵AB=AC
∴∠B=∠ACB(等边对等角)
∴2∠B+∠A=180°
∵CD是边AB上的高
∴∠BDC=90°,∠BCD+∠B=90°(垂直的意义)
2∠BCD+2∠B=180°(等式性质)
2∠B+∠A-(2∠BCD+2∠B)
=2∠B+∠A-2∠BCD-2∠B
=∠A-2∠BCD=0(等式性质,等量减等量)
∴∠BCD=1/2∠A
实际上就发现应用已知的性质就OK了,呵呵.

作AE垂直于BC于E
由于三角形ABC为等腰三角形
则AE为三角形ABC的角平分线
则角BCD=90-角B=角BAE=1/2A

证:∵AB=AC
∴∠B=∠ACB,即2∠B+∠A=180°①
∵CD是边AB上的高
∴∠BDC=90°,∠BCD+∠B=90°
2∠BCD+2∠B=180°②
①-②得
2∠B+∠A-(2∠BCD+2∠B)=0
2∠B+∠A-2∠BCD-2∠B=0
∠A-2∠BCD=0
即 ∠BCD=1/2∠A

解 ∵CD⊥AB
∴∠BCD+∠B=90度
∠ACD+∠A=90度
∴∠BCD=90度-∠B
∠ACD=90度-∠A
∵AB=AC
∴∠B=∠BCD+∠ACD
∴∠BCD=90度-∠B
=90度-∠BCD-∠ACD
=90度-∠BCD-90度+∠A
∴2∠BCD=∠A
∴∠BCD=1/2∠A

中间做个辅助线
从A那边向下作高交BC于E点
因为AB=AC
所以∠BAE=∠CAE
△ABE相似于△CBD
注:两个直角,共用∠B
∠BCD=∠BAE
∠BCD=1/2∠A