如图,在平面直角坐标系中,已知等腰直角三角形ABC,∠C=90°,AC=BC=2,点A、C分别在x轴、y轴上,当点A从原点开始在x轴的正半轴上运动时,点C在y轴正半轴上运动.(1)当A在原点时,求点B的坐标;(2)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:56:48
如图,在平面直角坐标系中,已知等腰直角三角形ABC,∠C=90°,AC=BC=2,点A、C分别在x轴、y轴上,当点A从原点开始在x轴的正半轴上运动时,点C在y轴正半轴上运动.(1)当A在原点时,求点B的坐标;(2)
如图,在平面直角坐标系中,已知等腰直角三角形ABC,∠C=90°,AC=BC=2,点A、C分别在x轴、y轴上,当点A从原点开始在x轴的正半轴上运动时,点C在y轴正半轴上运动.(1)当A在原点时,求点B的坐标;(2)当OA=OC时,求原点O到点B的距离OB;(3)在运动的过程中,求原点O到点B的距离OB的最大值,并说明理由.
如图,在平面直角坐标系中,已知等腰直角三角形ABC,∠C=90°,AC=BC=2,点A、C分别在x轴、y轴上,当点A从原点开始在x轴的正半轴上运动时,点C在y轴正半轴上运动.(1)当A在原点时,求点B的坐标;(2)
(1) B(2,2);
(2) 根号10;
A(根号2,0),C(0,根号2),B(根号2,2倍根号2)
(3)
A(x,0),C(0,根号下(4-x))
列个方程求最大值
图呢????
:(1)当点A在原点时,如图1,AC在y轴上,BC⊥y轴,
所以点B的坐标是(2,2).
(2)当OA=OC时,如图2,
△OAC是等腰直角三角形,AC=2,
所以∠OAC=∠OCA=45°,OA=OC=2,
过点B作BD⊥y轴于点D,
所以∠BCD=90°-∠ACO=90°-45°=45°,
又因为BC=2,
所以CD=...
全部展开
:(1)当点A在原点时,如图1,AC在y轴上,BC⊥y轴,
所以点B的坐标是(2,2).
(2)当OA=OC时,如图2,
△OAC是等腰直角三角形,AC=2,
所以∠OAC=∠OCA=45°,OA=OC=2,
过点B作BD⊥y轴于点D,
所以∠BCD=90°-∠ACO=90°-45°=45°,
又因为BC=2,
所以CD=BD=2,OD=OC+CD=22,
故OB=(22)2+(2)2=10.
(3)如图3,
取AC的中点E,连接OE,BE.
在Rt△AOC中,OE是斜边AC上的中线,
所以OE=12AC=1,
在△ACB中,BC=2,CE=12AC=1,
所以BE=5;
若点O,E,B不在一条直线上,则OB<OE+BE=1+5.
若点O,E,B在一条直线上,则OB=OE+BE=1+5,
所以当O,E,B三点在一条直线上时,OB取得最大值,最大值为1+5.
收起