已知tanα=2,则4sin^2α-3sinαcosα-5cos^α=已知tanα=2,则4sin^2α-3sinαcosα-5cos^2α=.我知道正确解法.我想问的是.为什么不直接除以cos^2α呢?而是要除以sin^2α+cos^2α?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 21:02:17
已知tanα=2,则4sin^2α-3sinαcosα-5cos^α=已知tanα=2,则4sin^2α-3sinαcosα-5cos^2α=.我知道正确解法.我想问的是.为什么不直接除以cos^2α呢?而是要除以sin^2α+cos^2α?
xRN@+MQwrD R<";R)?#p] ^.ĕs̹oG#8!aTpw$.dlFwEs]V5 c.weFTJDIi F鑨 [fk~]L"SoF{O-l{c^)ؐJ{ D g( ǩ~ B.$W ]/E[ M6E`& J򫹴)(7q~6>]O[͓hЈ%6dFG:̈́Hm (quCco`F UֱTA(a"90|h "r

已知tanα=2,则4sin^2α-3sinαcosα-5cos^α=已知tanα=2,则4sin^2α-3sinαcosα-5cos^2α=.我知道正确解法.我想问的是.为什么不直接除以cos^2α呢?而是要除以sin^2α+cos^2α?
已知tanα=2,则4sin^2α-3sinαcosα-5cos^α=
已知tanα=2,则4sin^2α-3sinαcosα-5cos^2α=.
我知道正确解法.我想问的是.
为什么不直接除以cos^2α呢?而是要除以sin^2α+cos^2α?

已知tanα=2,则4sin^2α-3sinαcosα-5cos^α=已知tanα=2,则4sin^2α-3sinαcosα-5cos^2α=.我知道正确解法.我想问的是.为什么不直接除以cos^2α呢?而是要除以sin^2α+cos^2α?
因为这是一个整式,本身是没有分母哦,我们把分母看成“1”,即sin^2a+cos^2a,
原式=(4sin^2α-3sinαcosα-5cos^α)/1=(4sin^2α-3sinαcosα-5cos^α)/(sin^2a+cos^2a)=.

sin^2α+cos^2α=1,这里用到了分母为1的技巧。在解三角函数问题时,经常被用到,成为“活用1 ” 。