已知函数f(x)=ax²+1(a>0),g(x)=x^3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;(2)当a^2=4b时,求函数f(x)+g(x)-的单调区间,并求其在区间(-∞,-1]上的最大值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 02:18:30
已知函数f(x)=ax²+1(a>0),g(x)=x^3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;(2)当a^2=4b时,求函数f(x)+g(x)-的单调区间,并求其在区间(-∞,-1]上的最大值.
xRMo@1*[^CDiUEZGJoj/6&@&( M$miKcÉY;*Y웷L&g6Ѕ,8lK3qZ3dL$lJ1Dy܆t( E> K| c-:%GA%77FLDBOK }u3h d`>(›ɢx(PP${JT{;Zy=1_$MjTqzcj4t up/K'ai]>mݵt}>&w^U?јK ԥ_9cuDMs<a~3[@*&)9=.b 2/G) #eJ~'61n@$e{5Jfe5EB\r]4| ,ޟ- mYd=&w^RBc֊F_CyWU%QEFR IR"AN Cq8;M llFX9"1QPgs"5K۠/}>q2ɗ9 

已知函数f(x)=ax²+1(a>0),g(x)=x^3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;(2)当a^2=4b时,求函数f(x)+g(x)-的单调区间,并求其在区间(-∞,-1]上的最大值.
已知函数f(x)=ax²+1(a>0),g(x)=x^3+bx.
(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;
(2)当a^2=4b时,求函数f(x)+g(x)-的单调区间,并求其在区间(-∞,-1]上的最大值.

已知函数f(x)=ax²+1(a>0),g(x)=x^3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;(2)当a^2=4b时,求函数f(x)+g(x)-的单调区间,并求其在区间(-∞,-1]上的最大值.
1.首先对f(x)g(x)分别求导,然后代入x=1.则可以得到一个等式:2a=3+b(1);再将(1,c)分别代入两个狮子可以得到两个式子:a+1=c(2);1+b=c(3);联立(2)(3)可以得到a=b;则a=b=3;
2.首先先将a^2=4b代入g(x),则g(x)+f(x)=x^3+ax^2+(a^2/4)x+1;令上面那个函数为F(x),则对F(x)求导,得3x^2+2ax+(a^2/4)=0;解得x1=-(a/2);x2=-(a/6);即在(-a/2,-a/6)递减,之外递增;当6>a>2时,F(-a/2)最大,其余情况你自己列吧.我懒得打了