关于高数极限证明的几道题 证明 1.lim(xn)=n^2/(2n^3+1)=0 2.lim(3n+1)/(2n-1)=3/2 3.lim2^n/n!=0第一题中ξ=0.1,0.01,0.001时的N值要怎么求呢!
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 03:43:22
xRN1~kڦ'ya%!nU H5p _QGCk'9
JpAVz>G^yޘt5NMW
,]>+_SX3_݁PYya"H0[p+ÀU tK̏;I68MM5}<,ҏ3N^?IT@ZMF<XkTofa] uZ?ZBR@@!V-J
1 A1,,,SǞr)R}ZF3\P%K@?(imSv$HVHFaě 㤫.2Aɹugb[uЛf.Y0~vf:ǠoZސ2
关于高数极限证明的几道题 证明 1.lim(xn)=n^2/(2n^3+1)=0 2.lim(3n+1)/(2n-1)=3/2 3.lim2^n/n!=0第一题中ξ=0.1,0.01,0.001时的N值要怎么求呢!
关于高数极限证明的几道题 证明 1.lim(xn)=n^2/(2n^3+1)=0 2.lim(3n+1)/(2n-1)=3/2 3.lim2^n/n!=0
第一题中
ξ=0.1,0.01,0.001时的N值要怎么求呢!
关于高数极限证明的几道题 证明 1.lim(xn)=n^2/(2n^3+1)=0 2.lim(3n+1)/(2n-1)=3/2 3.lim2^n/n!=0第一题中ξ=0.1,0.01,0.001时的N值要怎么求呢!
1、limn^2/(2n^3 +1) =lim(1/n) / (2 + 1/n^3)
∵n→∞时,1/n→0,1/n^3 →0
所以原式=0
2、lim(3n+1)/(2n-1) = lim(3+ 1/n) / (2- 1/n) = 3/2
3、2^n/n!= 2^n/(1*2*3*...*n) < 2^n/(1*2*3*3*3...*3) = 2*(2/3)^(n-2)
所以0
证明: 1’ 当n=1时,左= (2*1-1) 2; =1, 右=1/3*1*(4*1 2’ 假设当 n=k时,命题成立 即1 2; 3 2; 5 2; (2k-1)
放缩法n^2/(2n^3+1)小于n^2/(2n^3)