数列〔an〕满足an+1+an=4n-3,当a1=2时,求数列〔an〕前n项和
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 09:57:37
xQN1Y2LfʰI%(3 "0,FJ ȴ_N5=K(7%,-[M^$8#Ax@sD}4+nO_UxLVSv0/V*LfPh*'ԵgӭC _a[I\PA<~07QxVN]1w8Y8C=RB2Py1I#1YIBa[o.β;acݼת[%+Ê*-SUml`d+Ȋgj4֝j*]"< 9To[ĒأG.b*<㦒G~A$
数列〔an〕满足an+1+an=4n-3,当a1=2时,求数列〔an〕前n项和
数列〔an〕满足an+1+an=4n-3,当a1=2时,求数列〔an〕前n项和
数列〔an〕满足an+1+an=4n-3,当a1=2时,求数列〔an〕前n项和
a(n+1)+an=4n-3,an+a(n-1)=4(n-1)-3故a(n+1)-a(n-1)=4,n≥2 a1=2,a2=-1
n为奇数时an=2+(n-1)/2*4=2n,a(n-1)=-1+(n-1)/2*4=2n-5
Sn=(2+2n)*(n+1)/2/2+(-1+2n-5)*(n-1)/2/2 =n^2-n+2
n为偶数时Sn=n^2+n/2
题目打错了吧
a(n+1)+an=4n-3 an-a(n-1)=4(n-1)-3 两式相减,得到 a(n+1)-a(n-1)=4 也就是说a1,a3,a5,a(2k-1)成等差数列, a2,a4,
an=(-1)^(n-1)x5/2+2n-5/2
数列〔an〕满足an+1+an=4n-3,当a1=2时,求数列〔an〕前n项和
已知数列{an}满足a1=4/3,且an+1=4(n+1)an/3an+n
数列{an}满足a1=1,且an=an-1+3n-2,求an
已知数列{an}满足a1=4/3,且an+1=〔4(n+1)an〕/(3an+n) (n∈N*)已知数列{an}满足a1=4/3,且an+1=〔4(n+1)an〕/(3an+n)(n∈N*).(1)求1/a1+2/a2+…+n/an的值;(2)求证:a1+a2/2+a3/3+…+an/n≤ n+ 7/12-(1/4)^n
已知数列{an}满足a1=4,3an=5an(n下-1) +1,求an
数列an满足,a1=1/4,a2=3/4,an+1=2an-an-1(n≥2,n属于N*),数列bn满足b1
数列{an)满足an=4a(n-1)+3,a1=0,求数列{an}的通项公式
数列an满足a1=1/3,Sn=n(2n-1)an,求an
数列〔an〕满足an+1+an=4n-3,当a1=2时,Sn为数列〔an〕前n项和,求S 2n+1
已知数列{an}满足,a1=2,a(n+1)=3根号an,求通项an数列{an}满足:an>0,且根号下Sn=an+1/4,求通项an
数列{an}满足a1=1 an+1=2n+1an/an+2n
数列[An]满足a1=2,a(n+1)=3an-2 求an
已知数列an满足a1=4,an=n+1/n-1乘以an-1则an=
已知数列{an}满足a1=-1,an=[(3n+3)an+4n+6]/n,求数列an的通向公式.已知数列{an}满足a1=-1,an=[(3n+3)an+4n+6]/n,bn=3^(n-1)/an+2.求数列an的通向公式.第一遍打错了。是下面这个。an+1=[(3n+3)an+4n+6]/n,bn=3^(n-1)/an+2
数列{an}满足a1=1,an=3n+2an-1(n≥2)求an
已知数列{an}满足a1=1,an=(an-1)/3an-1+1,(n>=2,n属于N*),求数列{an}的通项公式
已知数列{an}满足a1=1 an+1=an/(3an+1) 则球an
已知数列{an}满足an+1=an+n,a1等于1,则an=?