数列〔an〕满足an+1+an=4n-3,当a1=2时,求数列〔an〕前n项和

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 09:57:37
数列〔an〕满足an+1+an=4n-3,当a1=2时,求数列〔an〕前n项和
xQN1Y2LfʰI%(3 "0, FJ ȴ_N5=K(7%,-[M^$8#Ax@sD}4+nO_UxLVSv0/V*LfPh*'ԵgӭC_a[I\PA<~07QxVN]1 w8Y8C=RB2Py1I#1YIBa[o.β;acݼת[%+Ê*-SUml`d+Ȋgj4֝j*]"< 9To[ĒأG.b*<㦒G~A$

数列〔an〕满足an+1+an=4n-3,当a1=2时,求数列〔an〕前n项和
数列〔an〕满足an+1+an=4n-3,当a1=2时,求数列〔an〕前n项和

数列〔an〕满足an+1+an=4n-3,当a1=2时,求数列〔an〕前n项和
a(n+1)+an=4n-3,an+a(n-1)=4(n-1)-3故a(n+1)-a(n-1)=4,n≥2 a1=2,a2=-1
n为奇数时an=2+(n-1)/2*4=2n,a(n-1)=-1+(n-1)/2*4=2n-5
Sn=(2+2n)*(n+1)/2/2+(-1+2n-5)*(n-1)/2/2 =n^2-n+2
n为偶数时Sn=n^2+n/2

题目打错了吧

a(n+1)+an=4n-3 an-a(n-1)=4(n-1)-3 两式相减,得到 a(n+1)-a(n-1)=4 也就是说a1,a3,a5,a(2k-1)成等差数列, a2,a4,

an=(-1)^(n-1)x5/2+2n-5/2