设函数 f0(x)=1-x²,f1(x)=| f0(x)-1/2 |,fn(x)=| fn-1(x)-1/2n |,(n≥1,n∈N)则方程 f1(x)=1/3有_个实数根,方程 fn(x)=(1/3)n有_个实数根
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:01:47
xQAJ0JAf
6=+StEL
lq1paa0vIڙ
{i,~4ՋFR0__[ۻT+V|ș
`A, #PkDojtN,jϷfz!IE{x~ko$F~NLTPp7ifv6"T?; ZJ;M>д>0,EDa]Zߞ
LQI1Y
hƗyK6bvAbY1
设函数 f0(x)=1-x²,f1(x)=| f0(x)-1/2 |,fn(x)=| fn-1(x)-1/2n |,(n≥1,n∈N)则方程 f1(x)=1/3有_个实数根,方程 fn(x)=(1/3)n有_个实数根
设函数 f0(x)=1-x²,f1(x)=| f0(x)-1/2 |,fn(x)=| fn-1(x)-1/2n |,(n≥1,n∈N)则方程 f1(x)=1/3有_个实数根,方程 fn(x)=(1/3)n有_个实数根
设函数 f0(x)=1-x²,f1(x)=| f0(x)-1/2 |,fn(x)=| fn-1(x)-1/2n |,(n≥1,n∈N)则方程 f1(x)=1/3有_个实数根,方程 fn(x)=(1/3)n有_个实数根
f0(x)=1-x^2,
f1(x)=|f0(x)-1/2|=1/3有4个实数根,
fn(x)=|f(x)-1/2^n|=1/3^n:
1/2+1/2^2+……+1/2^n=1-1/2^n,
1/3+1/3^2+……+1/3^n=[1/3-1/3^(n+1)]/(1-1/3)=(1-1/3^n)/2,
∴fn(x)=1/3^n的实根的个数=f(x)=1/3^(n-1)的实根个数的2倍=……=2^(n+1).