已知函数f(x)=2√3sin(x/3)cos(x/3)-2sin^2(x/3) ,在三角形ABC中,f(C)=1,b^2=ac,求sinA=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 14:36:46
已知函数f(x)=2√3sin(x/3)cos(x/3)-2sin^2(x/3) ,在三角形ABC中,f(C)=1,b^2=ac,求sinA=?
xOPi ˆXUؤf` DB 2p/?Of"bs>s9=z%m|K_8s+cǦgeG[x ;NNo X2fn_^k4Vf"!ba2Eg;= _$ peu'e& i1~- z1Fbh(iOxbR]E+]ĹϿ/h~\/

已知函数f(x)=2√3sin(x/3)cos(x/3)-2sin^2(x/3) ,在三角形ABC中,f(C)=1,b^2=ac,求sinA=?
已知函数f(x)=2√3sin(x/3)cos(x/3)-2sin^2(x/3) ,在三角形ABC中,f(C)=1,b^2=ac,求sinA=?

已知函数f(x)=2√3sin(x/3)cos(x/3)-2sin^2(x/3) ,在三角形ABC中,f(C)=1,b^2=ac,求sinA=?
参考一下~

解析:
f(x)=2√3sin(x/3)cos(x/3)-2sin^2(x/3)
=√3*sin(2x/3) +1-2sin²(x/3) -1
=√3*sin(2x/3) +cos(2x/3) -1
=2*[sin(2x/3)*√3/2 + cos(2x/3)*1/2]-1
=2sin(2x/3 + π/6) -1...

全部展开

解析:
f(x)=2√3sin(x/3)cos(x/3)-2sin^2(x/3)
=√3*sin(2x/3) +1-2sin²(x/3) -1
=√3*sin(2x/3) +cos(2x/3) -1
=2*[sin(2x/3)*√3/2 + cos(2x/3)*1/2]-1
=2sin(2x/3 + π/6) -1
已知f(C)=1,那么:
2sin(2C/3 + π/6) -1=1
即sin(2C/3 + π/6) =1
由于0所以解sin(2C/3 + π/6) =1可得:
2C/3 + π/6=π/2
即2C/3 = π/3
解得:C=π/2
所以△ABC是以c为斜边的直角三角形
那么:b²=ac=c²-a²
即c²-ac-a²=0
(c- a/2)²- 5a²/4=0
(c- a/2)²= 5a²/4 (*)
因为c>a,那么c - a/2>0
所以解(*)得c- a/2=根号5*a/2
即c=(1+根号5)a/2
所以:sinA=a/c=2/(1+根号5)=(根号5 -1)/2

收起