高数中第二类间断点设函数f(x)在点x0的某去心邻域内有定义 在此前提下 如果函数f(x)有下列三种情形之一(1)在x=x0没有定义 (2)虽在x=x0有定义 但lim(x→x0)f(x)不存在 (3)虽在x=x0有定义 且lim(x→x0)f
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:55:31
高数中第二类间断点设函数f(x)在点x0的某去心邻域内有定义 在此前提下 如果函数f(x)有下列三种情形之一(1)在x=x0没有定义 (2)虽在x=x0有定义 但lim(x→x0)f(x)不存在 (3)虽在x=x0有定义 且lim(x→x0)f
高数中第二类间断点
设函数f(x)在点x0的某去心邻域内有定义 在此前提下 如果函数f(x)有下列三种情形之一
(1)在x=x0没有定义
(2)虽在x=x0有定义 但lim(x→x0)f(x)不存在
(3)虽在x=x0有定义 且lim(x→x0)f(x)存在 但lim(x→x0)f(x)≠f(x0)
则函数f(x)在点x0为不连续 而点x0称为函数f(x)的不连续点或间断点
我想问的是 那个"(2)虽在x=x0有定义 但lim(x→x0)f(x)不存在"是怎么一种情况?好像 x=x0有定义 那么f(x0)就存在呀?举个例子呗
高数中第二类间断点设函数f(x)在点x0的某去心邻域内有定义 在此前提下 如果函数f(x)有下列三种情形之一(1)在x=x0没有定义 (2)虽在x=x0有定义 但lim(x→x0)f(x)不存在 (3)虽在x=x0有定义 且lim(x→x0)f
我帮你理一下对应上面1,2,3,三类间断点是:第二类间断点(你理解那个不叫第二类,叫跳跃),跳跃间断点,可去间断点,
其中你问好像 x=x0有定义 那么f(x0)就存在呀?
我举个例子,f(x)=1在[0,1)
f(x)=2在[1,2],
x=1时候就是有定义但无极限,你可以看出是有个跳跃
左右极限不一样。出现了跳跃式间断。 即 x≤ x0 的解析式,和x>x0的解析式不同,且两段函数在x0处的极限不一样左右极限不相等 就等于lim(x→x0)f(x)不存在吗?左右极限中,有一个不存在,或者两个都不存在,或者虽然都存在但不相等, 就等于lim(x→x0)f(x)不存在 或者说,lim(x→x0)f(x)存在 的充要条件是: “lim(x→x0﹢) f(x)存在,且 lim(...
全部展开
左右极限不一样。出现了跳跃式间断。 即 x≤ x0 的解析式,和x>x0的解析式不同,且两段函数在x0处的极限不一样
收起