已知函数f(x)=(1+cotx)sin²x+msin(x+π/4)× sin(x-π/4)(1)当m=0时,求f(x)在区间[ π/8 ,3π/4 ]上的取值范围(2)当tanα=2时,f(α)=3/5,求m的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:56:26
已知函数f(x)=(1+cotx)sin²x+msin(x+π/4)× sin(x-π/4)(1)当m=0时,求f(x)在区间[ π/8 ,3π/4 ]上的取值范围(2)当tanα=2时,f(α)=3/5,求m的值
已知函数f(x)=(1+cotx)sin²x+msin(x+π/4)× sin(x-π/4)
(1)当m=0时,求f(x)在区间[ π/8 ,3π/4 ]上的取值范围
(2)当tanα=2时,f(α)=3/5,求m的值
已知函数f(x)=(1+cotx)sin²x+msin(x+π/4)× sin(x-π/4)(1)当m=0时,求f(x)在区间[ π/8 ,3π/4 ]上的取值范围(2)当tanα=2时,f(α)=3/5,求m的值
(1) m=0时
f(x)=sin^2x+sinxcosx
=(1/2)[1-cos2x+sin2x]
=(√2/2)sin(2x-π/4)+1/2
当2x-π/4=π/2 x=3π/8是f(x)max=(√2+1)/2
而f(π/8)=(√2/2)*0+1/2=1/2 f(3π/4)=(√2/2)sin(5π/4)+1/2=1/2-1/2=0
∴f(x)在区间[ π/8 ,3π/4 ]上的取值范围是[0,(√2+1)/2]
(2) 当tanα=2时,cotα=1/2 sin^2α=1/(1+cot^2α)=4/5 cos^2α=3/5
此时f(α)=3/5
∴3/5=(1+1/2)*(4/5)+m*(1/2)(sin^2α-cos^2α)=6/5+m*(1/2)(4/5-3/5)
∴m/10=3/5-6/5
∴m=-6
(1)当m=0时,
f(x)=(1+cotx)sin²x=sin²x+cosxsinx=(1-cos2x)/2+sin2x/2=(1-cos2x+sin2x)/2
=[1+√2sin(2x-π/4)]/2
f(x)在区间[ π/8 , 3π/4 ]上
x=3π/4时,f(x)有最小值0
当x=3π/8时,f(x)有最大值(1+√2)/2<...
全部展开
(1)当m=0时,
f(x)=(1+cotx)sin²x=sin²x+cosxsinx=(1-cos2x)/2+sin2x/2=(1-cos2x+sin2x)/2
=[1+√2sin(2x-π/4)]/2
f(x)在区间[ π/8 , 3π/4 ]上
x=3π/4时,f(x)有最小值0
当x=3π/8时,f(x)有最大值(1+√2)/2
取值范围是[0,(1+√2)/2
](2)当tanα=2时,f(α)=3/5
则cotα=1/2
sin²α=1-cos²α=1-1/sec²α=1-1/(1+tan²α)=4/5
sin(α+π/4)× sin(α-π/4)=(cos90-cos2α)/2=(-cos2α)/2=(2sin²α-1)/2=3/10
所以
3/5=(1+1/2)4/5+m*3/10
m=-2
收起