已知 sin(A+B)=1\2,sin(A-B)=1\3,求tan(A+B)-tanA-tanB\tanB*tanB*tan(A+B).

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:28:14
已知 sin(A+B)=1\2,sin(A-B)=1\3,求tan(A+B)-tanA-tanB\tanB*tanB*tan(A+B).
x){}K344m ct]0XƦD."b@K$S8;a>9:0ib'm f)hj"+hAdl+0T &T2"a7b1= VoR 0ksphǥqH̃$ӭ ! !fB˹YlNu|o֧m[~6cIv>ӯdG)+]dZl @

已知 sin(A+B)=1\2,sin(A-B)=1\3,求tan(A+B)-tanA-tanB\tanB*tanB*tan(A+B).
已知 sin(A+B)=1\2,sin(A-B)=1\3,求tan(A+B)-tanA-tanB\tanB*tanB*tan(A+B).

已知 sin(A+B)=1\2,sin(A-B)=1\3,求tan(A+B)-tanA-tanB\tanB*tanB*tan(A+B).
sin(A+B)=1/2,sin(A-B)=1/3,
sinAcosB+cosAcosB=1/2 (1)
sinAcosB-cosAcosB=1/3 (2)
(1)+(2):
2sinAcosB=5/6
(1)-(2):
2cosAsinB=1/6
【tan(A+B)-tanA-tanB]/[tanB*tanB*tan(A+B)]
=[(tanA+tanB)/(1-tanAtanB)-tanA-tanB]/[tanB*tanB*(tanA+tanB)/(1-tanAtanB)]
=[(tanA+tanB)-(1-tanAtanB)(tanA+tanB)]/[tanB*tanB*(tanA+tanB)]
=(tanA+tanB)tanAtanB/【tanB*tanB*(tanA+tanB)】
=1
后面在有定义得情况下是恒等式,不用条件的