如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-4,0),点B的坐标是(0,b)(b>0).p是直线AB上的一个动点,作pC垂直X轴,垂足C.记点p关于y轴的对称点为p`(点p`不在y轴上)连接pP`,P`A,P`C.设点P的横坐
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 15:46:15
如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-4,0),点B的坐标是(0,b)(b>0).p是直线AB上的一个动点,作pC垂直X轴,垂足C.记点p关于y轴的对称点为p`(点p`不在y轴上)连接pP`,P`A,P`C.设点P的横坐
如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-4,0),点B的坐标是(0,b)(b>0).p是直线AB上的一个动点,
作pC垂直X轴,垂足C.记点p关于y轴的对称点为p`(点p`不在y轴上)连接pP`,P`A,P`C.设点P的横坐标为a.(1)当b=3时,求直线AB的解析式.若点p`的坐标是(-1,m),求m的值;(2)若点p在第一象限,记直线AB于P`C的交点为D.当p`D:DC=1:3时,求a的值.(3)是否同时存在a,b,使三角形p`CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在请说出理由.
只要第三问~
如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-4,0),点B的坐标是(0,b)(b>0).p是直线AB上的一个动点,作pC垂直X轴,垂足C.记点p关于y轴的对称点为p`(点p`不在y轴上)连接pP`,P`A,P`C.设点P的横坐
(3)当点P在第一象限时,
第一种情况
若∠AP′C=90°,P′A=P′C
过点P′作P′H⊥x轴于点H.
∴PP′=CH=AH=P′H=1/2AC.
∴2a=1/2(a+4)
∴a=4/3
第二种情况
若∠P′AC=90°,P′A=C,
则PP′=AC,
∴2a=a+4,
∴a=4,
第三种情况
若∠P′CA=90°,
则点P′,P都在第一象限内,这与条件矛盾.
∴△P′CA不可能是以C为直角顶点的等腰直角三角形.
∴所有满足条件的a的值为a=4或4/3
jjgjygh
(1)①设直线AB的解析式为y=kx+3, (3)以下分三种情况讨论. 2)若∠P′AC=90°,P′A=CA, 3)若∠P′CA=90°,
把x=-4,y=0代入得:-4k+3=0,
∴k=3 4 ,
∴直线的解析式是:y=3 4 x+3,
②由已知得点P的坐标是(1,m),
∴m=3 4 ×1+3=15 4 ;
(2)∵PP′∥AC,
△PP′D∽△ACD,
∴P′D DC =P′P CA ,即2a a+4 =1 3 ,
∴a=4 5 ;
①当点P在第一象限时,
1)若∠AP′C=90°,P′A=P′C(如图1)
过点P′作P′H⊥x轴于点H
∴PP′=CH=AH=P′H=1 2 AC.
∴2a=1 2 (a+4)
∴a=4 3
∵P′H=PC=1 2 AC,△ACP∽△AOB
∴OB OA =PC AC =1 2 ,即b 4 =1 2 ,
∴b=2
则PP′=AC
∴2a=a+4
∴a=4
∵P′A=PC=AC,△ACP∽△AOB
∴OB OA =PC AC =1,即b 4 =1
∴b=4
则点P′,P都在第一象限内,这与条件矛盾.
∴△P′CA不可能是以C为直角顶点的等腰直角三角形.
②当点P在第二象限时,∠P′CA为钝角(如图3),此时△P′CA不可能是等腰直角三角形;
③当P在第三象限时,∠P′AC为钝角(如图4),此时△P′CA不可能是等腰直角三角形.
若∠P′AC=90°,△P′AC是等腰直角三角形,则a=OA=4,P′A=20A=8,
则P的坐标是(4,8).
设直线PB的解析式是:y=kx+b,
则 -4k+b=0 4k+b=8 ,
解得: k=1 b=4 ,
则直线PB的解析式是:y=x+4,
令x=0,解得:y=4.则B的坐标是(0,4),因而a=4.
当∠ACP=90°时,P与P′重合.
所有满足条件的a,b的值为 a=4 b=4 .