已知函数f(x)=(sinx-cosx)sin2x/sinx,求f(x)单调减区间

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 03:37:31
已知函数f(x)=(sinx-cosx)sin2x/sinx,求f(x)单调减区间
xU_OP*'11tuKքL0ƇEb$R$t:4ƒ0 7n<+l钵{G+kljJCFXM<3"Na\)LdoOR;fكV~GHCy|HQ+V]og#S`yzM6,&%lf a Va++I5ٮ⨆A p?]!=z>p-ܗTUPPr1 e(g_YcȡE;w#*6RwpUĠ*)R!tr`v{EޮF+ȪS4 |>ybؐh + ZCD/D`]JW/I,k :^d3α/I{.Z#dVHv_֮d)-u]fXtJtj.?kVtVK+StUB,ٳ(:_Z5zsMhj8԰>xW9+ Q@p+%ꋆO(*7zzLX1;dEӽ遹}

已知函数f(x)=(sinx-cosx)sin2x/sinx,求f(x)单调减区间
已知函数f(x)=(sinx-cosx)sin2x/sinx,求f(x)单调减区间

已知函数f(x)=(sinx-cosx)sin2x/sinx,求f(x)单调减区间
(1)由sinx≠0得x≠kπ(k∈Z),
故求f(x)的定义域为{x|x≠kπ,k∈Z}.
∵f(x)=(sinx-cosx)sin2x /sinx
=2cosx(sinx-cosx)
=sin2x-cos2x-1
=√2sin(2x-π/4 )-1
函数y=sinx的单调递减区间为[2kπ+π /2 ,2kπ+3π/2 ](k∈Z)
∴由2kπ+π /2 ≤2x-π/4≤ 2kπ+3π/2 ,x≠kπ(k∈Z)
得kπ+π 3/8≤x≤kπ+7π/8 (k∈Z)
∴f(x)的单调递减区间为:[kπ +3π /8,kπ+7π/8】( k∈Z)

f(x)=(sinx-cosx)sin2x/sinx
=2(sinx-cosx)sinxcosx/sinx
=2(sinx-cosx)cosx
=2sinxcosx-2cos²x
=sin2x-cos2x-1
=√2sin(2x-π/4)-1
π/2+2kπ<2x-π/4<3π/2+2kπ<...

全部展开

f(x)=(sinx-cosx)sin2x/sinx
=2(sinx-cosx)sinxcosx/sinx
=2(sinx-cosx)cosx
=2sinxcosx-2cos²x
=sin2x-cos2x-1
=√2sin(2x-π/4)-1
π/2+2kπ<2x-π/4<3π/2+2kπ
3π/4+2kπ<2x<7π/4+2kπ
3π/8+kπ所以,f(x)的递减区间为(3π/8+kπ,7π/8+kπ)k∈Z

祝你开心!希望能帮到你,如果不懂,请追问,祝学习进步!O(∩_∩)O

收起

f(x)=(sinx-cosx)sin(2x)/sinx
= 2(sinx-cosx)cosx
= sin2x-(cos2x+1)
=√2( sin(2x-π/4) -1
单调减区间
2kπ+π/2<=2x-π/4<= 2kπ+3π/2
kπ+3π/8<=x<=kπ+7π/4 ; k=0,1,2,...

解决方案:
(1)sinx的≠0,X≠Kπ,K∈Z
F(x)的=(sinx的cosx的)sin2x/sinx
=(sinx的cosx的)* 2cosx BR /> = 2sinxcosx-2cos 2所述
= sin2x - cos2x-1
=√2sin(2X-π/ 4)下-1
T =2π/ 2 =π
(2)增加范围≤2...

全部展开

解决方案:
(1)sinx的≠0,X≠Kπ,K∈Z
F(x)的=(sinx的cosx的)sin2x/sinx
=(sinx的cosx的)* 2cosx BR /> = 2sinxcosx-2cos 2所述
= sin2x - cos2x-1
=√2sin(2X-π/ 4)下-1
T =2π/ 2 =π
(2)增加范围≤2X-PI
2kπ-π/ 2/4 <2kπ或2kπ<2X-π/ 4≤2kπ+ PI / 2
2kπ-π/ 4≤2倍<2kπ+π/ 4或2kπ+π/ 4 <2倍≤2kπ
Kπ-π/ 8≤X 增加间隔[Kπ-π/ 8Kπ+π/ 8)和(Kπ+ PI / 8,Kπ的+3 PI / 8},K∈

收起