如图,D、E、F分别是△ABC各边的中点,AH是△ABC的高,试说明四边形DHEF是等腰梯形请快速回答

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 02:35:28
如图,D、E、F分别是△ABC各边的中点,AH是△ABC的高,试说明四边形DHEF是等腰梯形请快速回答
xSmKP+AP4umJŸ7Imi :_R*b77A$sZtIɿ'MmɆ / $ܓso0D>OE 4)Û",1vUr ʹ{qM[=g4 [vW욇"VJηi9,g|L\\JUxKmha(Hc}gc }>bht6Wy(NJ~yͩ(ϼ"AehL+GP2 xA64U|QEY$˄Ѡ \$C75D"O `E{!yf#5"a9E3ǘz̋<_xk5֬lT?ZgODG.[iصe0DHe;ɒHi>TᇤWokcK_ ;߹S~^g9Y 2zum9 ^5֜>9ll6cdp948EQIoY\t-S-wU_$e/-c\tK`RVD(HƑn΃Dnש @ ֕WC;69AK_O*'@m-Yg셭 u.n\ M/L(ĆY1֫LӁܗ]9vNnF

如图,D、E、F分别是△ABC各边的中点,AH是△ABC的高,试说明四边形DHEF是等腰梯形请快速回答
如图,D、E、F分别是△ABC各边的中点,AH是△ABC的高,试说明四边形DHEF是等腰梯形


请快速回答

如图,D、E、F分别是△ABC各边的中点,AH是△ABC的高,试说明四边形DHEF是等腰梯形请快速回答
我会了,因为D、F是AB,AC中点,所以DF是三角形ABC中位线,所以DF//BC,所以四边形DFHE为梯形.又因为AH垂直BC,D为AB中点,所以DH=1/2AB.又因为E,F为BC,AC中点,所以EF是三角形ABC中位线,所以EF=1/2AB,所以DH=EF,所以梯形DHEF是等腰梯形.

证明:由已知条件可知:EF∥AB DF∥BC且EF=1/2AB(三角形的中位线平行于底边切等于底边的 一半)
又∵AH⊥BC
∴DH=1/2AB(直角三角形斜边上的中线等于斜边的一半)
∴EF=DH(等量代换)
∴四边形DHEF是等腰梯形http://zhidao.baidu.com/question/550706732?q...

全部展开

证明:由已知条件可知:EF∥AB DF∥BC且EF=1/2AB(三角形的中位线平行于底边切等于底边的 一半)
又∵AH⊥BC
∴DH=1/2AB(直角三角形斜边上的中线等于斜边的一半)
∴EF=DH(等量代换)
∴四边形DHEF是等腰梯形

收起

如图,D,E,F分别是△ABC各边的中点,AH是△ABC的高,四边形DHEF是等腰梯形吗?为什么? 如图,点D、E、F分别是△ABC各边的中点 猜想中线AD与中位线EF存在怎样的特殊关系? 如图,D,E,F分别是△ABC各边的中点,AH是BC边上的高求证四边形DEFH是等腰梯形 已知如图在△ABC中,D、F、E分别是各边中点,AH是边BC上的高.求证:四边形DEFH为等腰梯形 如图,D,E,F分别是三角形ABC各边的中点,AH是三角形ABC的高,四边形DHEF是等腰梯形吗,为什么 如图,点D,E,F分别是△ABC的边AB,BC,CA的中点,连接DE,EF,FD,则图中平行四边形的个数为________. 如图,在△ABC中,AG为BC上的高,E,D,F分别是边AB,BC,AC的中点.求证:四边形EDGF等腰梯形 如图,在△ABC中,AG为BC上的高,E,D,F分别是边AB,BC,AC的中点.求证:四边形EDGF等腰梯形 如图,D,E,F分别是三角形ABC各边的中点,AH是BC边上的高.求证:四边形DEFH是等 已知,如图,△ABC是等边三角形,点D,E,F分别是边AB,BC,CA的中点.求证 △DEF是等边三角形 如图,在△ABC中,点D、E、F分别是边AB、BC、CA的中点.若AC=BC,则四边形DECF是什么特殊四边形. 如图,在△ABC中,D、E、F分别是AB、BC、AC边的中点,求证AE和DF互相平分RT.急!坐等 已知:如图,在△ABC中,∠BAC=90°,D,E,F分别是BC,CA,AB边的中点.求证AD=EF 如图,点D,E,F分别是△ABC的三条边的中点,设△ABC的面积为s,求△DEF的面积 如图,在三角形abc中,d,e,f分别是三边中点,则四边形cdef的周长为 如图,D,E,F分别是三角形ABC的三边中点,求证AD与EF互相平分. 如图,D.E.F分别是三角形ABC的边AB,AC,BC的中点,求证:三角形ABC全等三角形FED自己画图 已知,如图,在△ABC中,D,E,F分别是三边的中点,求证S△DEF=1/4S△ABC