z=arctan(x+y)/(x-y)的全微分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 05:34:30
xO=
0J9EjR{ਈ$nNmZq
>]ă(+, Зoa5Wc5N)jd뿓AJGNC?aNć^Dhа'N"jgfP^W>x$ cG@UG%V[I7EϠ^'zy~\)eᦋ
z=arctan(x+y)/(x-y)的全微分
z=arctan(x+y)/(x-y)的全微分
z=arctan(x+y)/(x-y)的全微分
z=arctan(x+y)/(x-y)
z'x=[(1+y')/(1+(x+y)^2)] /(x-y) +arctan(x+y)(1-y')/(x-y)^2
z'y=[(1+x')/(1+(x+y)^2]/(x-y)+arctan(x+y)(x'-1)/(x-y)^2
dz=z'x dx+ z'y dy
(-ydx+xdy)/(x^2+y^2)
(x+y/x-y)' *[1/1+(x+y/x-y)^2]按x是未知量时,是dx,y是未知量时,是dy,