求证:1+1/2+1/3+...+1/n>In(n+1)+n/2(n+1) (n属于N+)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:26:25
求证:1+1/2+1/3+...+1/n>In(n+1)+n/2(n+1) (n属于N+)
xSMo@+eWXlnD)ZR(@--RJMD3ԿYDHm~}{3vf\ OZElxipRETF'A|y 򏑤j'u?m6w47Ew&]H*zSykvsh9V4 jXMX6.WaamRDހ8 -IU"K}7ߐ@F_zhi ]a6TY\f#Z:s :4k{ˣս,`&e;lkK%|:[释w |ҐAQ1n%J77g~g\n63qVߝQ]t/dچ.ƫ[χ`u:U`'v>2Uȝ0Oǽ8ڀ[ S~n+4%v@]kov

求证:1+1/2+1/3+...+1/n>In(n+1)+n/2(n+1) (n属于N+)
求证:1+1/2+1/3+...+1/n>In(n+1)+n/2(n+1) (n属于N+)

求证:1+1/2+1/3+...+1/n>In(n+1)+n/2(n+1) (n属于N+)
推荐:采用构造函数法证明.注意到ln(n+1)=ln[(n+1)/n]+ln[n/(n-1)]+...+ln(3/2)+ln(2/1),而n/(n+1)=1-1/(n+1)=(1-1/2)+(1/2-1/3)+...+[1/n-1/(n+1)].于是我们根据要证明的表达式,两边取通项(x-->1/n)构造函数f(x)=x-ln(1+x)-(1/2)[x-x/(x+1)],x>0,求导易得f'(x)=x^2/[2(x+1)^2]>0,x>0.于是f(x)在x>0上单调递增,又f(x)可在x=0处连续,则f(x)>f(0)=0,x>0得x-ln(1+x)-(1/2)[x-x/(x+1)]>0即x>ln(1+x)+(1/2)[x-x/(x+1)],x>0.再取1/n(>0)替换x有1/n>ln[(n+1)/n]+(1/2)[1/n-1/(n+1)],将此不等式从1到n项累加得1+1/2+1/3+...+1/n>{ln[(n+1)/n]+ln[n/(n-1)]+...+ln(3/2)+ln(2/1)}+(1/2){(1-1/2)+(1/2-1/3)+...+[1/n-1/(n+1)]}=ln(n+1)+(1/2)[1-1/(n+1)]=ln(n+1)+n/[2(n+1)],(n属于N+)命题便得证.觉得行可采纳.