如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 04:12:32
如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P
xV[OG+#TF޵/-`xvV8P@U}4)B0T4)s3RAgvel̹}sN}ոQ0; sdMidEi-^敋5tZyr~`̵ |%HAE<,ucD"\Q/A0V s{zeF\ޱwA)Pcg'U1 ء}^=zyrb(k|w?VSɋD7A:u{f8835Y{'i/qpHbViU/O·q,0Gn)kpqb {X/O3dy s K 沸 q+2Ŀc?^H!g?3J%rྀĨB *w}sy*b-x*##rwa݆Fr[gp6?0?4:4J+Ce(C=1{Bw#} b$r٨Ĕ$qQQtijΪ|VE)2bWcJ4Q|CHoJߝHK%Q5-iUIL/IGH*wtw~ȹbj|~vG՜4MEQ)XIq9| }*!) 𬺔4\GWER+EE9+Q]usښx9Y#YI j @9h!{Ge1 {Jp's ׎RW>i\]I4&GL̍-s$x0^k{~yY gѯQVkג޿9" GR_j'RY"h s6"J$aaźcgEXvc~M5Z0RӬ!2K 8y;?c̞0Mgd! '[.qR=J/ rzLNAT _㩷Gh;zw#h'lWts8@Npvb 9Un5ܙNRzS(x Ν 0E~%‚,8 V ~IB,/l^sU5 CEksu B^F!\hSKx#ntGG,PQTo ջm$N$.f$ yc<ݺy}nO?}ihB] a}v"7y6+[5շ&1KCkZ3U }:G\5Hu8=;=Z:oo[vV nƭ]7j0|f- { ckx@Q81OPC!cO/I-ƐRnaZ075fb1)

如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P
如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.
(1)求该抛物线的函数关系式;
(2)当△ADP是直角三角形时,求点P的坐标;
(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.

如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P
1)抛物线的顶点坐标为Q(2,-1)
所以 x=-b/2a=2 得 b= -4a
y=-b²/4a+c=-1 得 4a=c+1
点c(0,3)在抛物线上 得 c=3
得a=1 b=-4
所以抛物线方程为y=x²-4x+3
2)当 y=0时 x²-4x+3=0 解得 x1=3 ,x2=1
所以由题意得A(3,0) ,B(1,0)
所以AC的直线方程为 x+y=3
设P(x,y)
因为PD‖y轴 所以D的横坐标为x
所以D(x,3-x)
ΔADP是直角三角形时
所以①当∠DPA=90°P与B重合 为(1,0)
②当∠DAP=90时
向量 AP=(3-X,-y) 向量AD=(3,-3)
所以 9-3x+3y=0 得 y-x+3=0
在抛物线上 所以 x²-5x+6=0
得x1=2 或x2=3(舍去,P与A不重合)
所以 P(2,-1)
3)
①当P(1,0)时不存在以APEF为顶点的平行四边形
②当P(2,-1)
设 E(k,0) F(x2,y2)
向量AP=(1,1) 向量FE=(x2-k,y2)
1×y2-1×(x2-k)=0 得y2=x2-k 注:平行四边形对边平行
2=(x2-k)²+y2 ² 所以y2 ²=1 注:平行四边形对边相等
当y2=1时y=x²-4x+3=1 得x ²-4x+2=0
解得x=(4±√8)/2=2±√2
当x=2-√2 k=x2-y2=2-√2-1=1-√2
当x=2+√2时 k=x2-y2=2+√2-1=1+√2
当y2=-1时 只有一点 舍去
所以F坐标为 (2-√2,1)或(2+√2,1)

1)抛物线的顶点坐标为Q(2,-1)
所以 x=-b/2a=2 得 b= -4a
y=-b²/4a+c=-1 得 4a=c+1
点c(0,3)在抛物线上 得 c=3
得a=1 b=-4
所以抛物线方程为y=x²-4x+3
...

全部展开

1)抛物线的顶点坐标为Q(2,-1)
所以 x=-b/2a=2 得 b= -4a
y=-b²/4a+c=-1 得 4a=c+1
点c(0,3)在抛物线上 得 c=3
得a=1 b=-4
所以抛物线方程为y=x²-4x+3
2)当 y=0时 x²-4x+3=0 解得 x1=3 ,x2=1
所以由题意得A(3,0) ,B(1,0)
所以AC的直线方程为 x+y=3
设P(x,y)
因为PD‖y轴 所以D的横坐标为x
所以D(x,3-x)
ΔADP是直角三角形时
所以①当∠DPA=90°P与B重合 为(1,0)
②当∠DAP=90时
向量 AP=(3-X,-y) 向量AD=(3,-3)
所以 9-3x+3y=0 得 y-x+3=0
在抛物线上 所以 x²-5x+6=0
得x1=2 或x2=3(舍去,P与A不重合)
所以 P(2,-1)
3)
①当P(1,0)时不存在以APEF为顶点的平行四边形
②当P(2,-1)
设 E(k,0) F(x2,y2)
向量AP=(1,1) 向量FE=(x2-k,y2)

1×y2-1×(x2-k)=0 得y2=x2-k 注:平行四边形对边平行
2=(x2-k)²+y2 ² 所以y2 ²=1 注:平行四边形对边相等
当y2=1时y=x²-4x+3=1 得x ²-4x+2=0
解得x=(4±√8)/2=2±√2
当x=2-√2 k=x2-y2=2-√2-1=1-√2
当x=2+√2时 k=x2-y2=2+√2-1=1+√2
当y2=-1时 只有一点 舍去
所以F坐标为 (2-√2,1)或(2+√2,1)

收起

如图,抛物线y=ax2+bx+c(a 已知抛物线y=ax2+bx+c(a 抛物线y=ax2+bx+c(a 抛物线y=ax2+bx+c(a 抛物线y=ax2+bx+c(a 抛物线y=ax2+bx+c(a 如图,已知抛物线y=ax2+bx(a大于0)与 如图,已知抛物线y=ax2+bx+c的顶点A在x轴上,与y轴的交点为B(0, 已知抛物线y=ax2+bx,当a>0,b 图我就不画了,直接说条件.已知抛物线y=ax2+bx+c,a0,b>0,a-b+c 如图13,抛物线Y=AX2 BX C的顶点c(1,0) 如图,抛物线y=ax2+bx+ 15 2 (a≠0)经过A(-3,0),C(5,0)两点,点B为抛物线y=ax2+bx+ 15/ 2 (a≠0) 如图,抛物线y=ax2+bx(a第二小题要有完整过程哦! 如图已知经过原点的抛物线y=ax2+bx(a不等于0)经过A(-2,2),B(6,6)两点已知过原点的抛物线y=ax2+bx+c经过如图,已知经过原点的抛物线y=ax^2+bx(a≠0)经过A(-2,2),B(6,6)两点,与x轴的另一交点为F,直线AB与x轴 如图,已知抛物线y=ax2+bx+c与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,如图,已知抛物线y=ax2+bx+c与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式及顶点M坐标 二次函数以图形的相似如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD交抛物线于点E(2,6), 如图,已知抛物线y=ax2+bx+c经过O(0,0)如图,已知抛物线y=ax2+bx+c经过O(0,0),A(4,0),B(3,根号3)三点,连结A,B,过点B作BC平行x轴交抛物线于点C.(1)求这条抛物线的函数解析式;(2)两个懂点P,Q分 抛物线Y=ax2+bx+c的图像如图,则关于x的方程ax2+bx+c-2=0的根的情况是