三角恒等式证明2(1+sina)(1+cosa)是怎么变到(1+sina+cosa)的平方的呢?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 20:59:50
三角恒等式证明2(1+sina)(1+cosa)是怎么变到(1+sina+cosa)的平方的呢?
xTN@.[@:]A"?P"ME d!ABV _;-+~ -n9oo\15﹅ -{6hnW$1my_uǪn@5P[U |+%CP$s)OJ#N$1N|M>W?uN4"(IR.;0$InɁ1hZyjNY\+KD&T`Fؘ{m|.M-F#Ӌcpo:QdZrvX>R\)hZMև~4N$QC7;oOd`ܮbMu>;mgU"m;;?8Ah4i͙6}5|6CL

三角恒等式证明2(1+sina)(1+cosa)是怎么变到(1+sina+cosa)的平方的呢?
三角恒等式证明
2(1+sina)(1+cosa)是怎么变到(1+sina+cosa)的平方的呢?

三角恒等式证明2(1+sina)(1+cosa)是怎么变到(1+sina+cosa)的平方的呢?
(1+sina+cosa)^2 = 1+ sina + cosa+sina+(sina)^2 +sinacosa + cosa +sinacosa + (cosa)^2
sin^2a +cos^2a= 1
带入得到
(1+sina+cosa)^2 = 2 + 2sina +2cosa +2sinacosa
而2(1+sina)(1+cosa)展开得到
=2(1+sina +cosa+sinacosa)
= 2 + 2sina +2cosa+2sinacosa
显然相等

乘出来

2(1+sina)(1+cosa)=2*(1+sina+cosasina+cosa)=2+2sina+2cosasina+2cosa
(1+sina+cosa)^2=1+(sina)^2+(cosa)^2+2sina+2cosa+2sinacosa
=1+1+2sina+2cosa+2sinacosa
...

全部展开

2(1+sina)(1+cosa)=2*(1+sina+cosasina+cosa)=2+2sina+2cosasina+2cosa
(1+sina+cosa)^2=1+(sina)^2+(cosa)^2+2sina+2cosa+2sinacosa
=1+1+2sina+2cosa+2sinacosa
=2+2sina+2cosa+2sinacosa
两式子相等,所以2(1+sina)(1+cosa)=1+sina+cosa)的平方
如果你硬要变,那反方向操作即可

收起