在四棱柱P-ABCD中 底面ABCD为矩形 侧棱PA⊥底面ABCD AB=根号3 BC=1 PA=2 E为PD的中点 向量法(1)求AC与PB所成角的余弦值(2)在侧面PAB中 找一点N 使NE⊥面PAC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 14:35:02
在四棱柱P-ABCD中 底面ABCD为矩形 侧棱PA⊥底面ABCD AB=根号3 BC=1 PA=2 E为PD的中点 向量法(1)求AC与PB所成角的余弦值(2)在侧面PAB中 找一点N 使NE⊥面PAC
xSn@YڕTAo-B} B,4*@%}!*Հ!h=cX <*Uj7]TBhs=q*&Ѡ1Ev\ "ڢuncL;THQ1ʷ$R5,!S2ҡΏW!R}8amSvTiɢOĹ!(P@ f SQ}R4sm ȝ: Zɾ#LM;Ib&N `2)@&cKV^xÉ@3֍ēb6Kz KҸP$Qבcx:_$Q?>h~,axmLfޛ3&NEP4_ ϛj~ { p+$+7`"rQ'EN~<[xP]8.I ƚya >\6Е:c؏r1g+jucZT>.yWM2DcH[wtH*c;ۃI 8JX'h4aiZ^?Xb8.+G8ц. ԼwMok+kt797: lbWx޿o82OM

在四棱柱P-ABCD中 底面ABCD为矩形 侧棱PA⊥底面ABCD AB=根号3 BC=1 PA=2 E为PD的中点 向量法(1)求AC与PB所成角的余弦值(2)在侧面PAB中 找一点N 使NE⊥面PAC
在四棱柱P-ABCD中 底面ABCD为矩形 侧棱PA⊥底面ABCD AB=根号3 BC=1 PA=2 E为PD的中点 向量法
(1)求AC与PB所成角的余弦值
(2)在侧面PAB中 找一点N 使NE⊥面PAC

在四棱柱P-ABCD中 底面ABCD为矩形 侧棱PA⊥底面ABCD AB=根号3 BC=1 PA=2 E为PD的中点 向量法(1)求AC与PB所成角的余弦值(2)在侧面PAB中 找一点N 使NE⊥面PAC
以A点为原点建立直角坐标系,图略.
(1)则有各点坐标A(0, 0, 0), C(根号3, 1, 0), B(根号3, 0, 0), P(0, 0, 2), E((0, 1/2, 1)
所以向量AC=(根号3, 1, 0),向量PB=(根号3, 0, -2)
由向量乘法公式,AC点乘PB=|AC||PB|cosθ(设θ为两向量夹角)
所以cosθ=AC点乘PB/(|AC||PB|)=3/(2*根号7)=3根号7/14
所以θ=arccos((3倍根号7)/14)
(2)设N点坐标为(x, 0, z),则向量EN=(x, -1/2, z-1).
要使EN⊥面PAC,只需垂直于面内两条直线即可.向量AP=(0, 0, 2),向量AC=(根号3, 1, 0)
EN点乘AP=2(z-1)=0(向量点乘为0即垂直) => z=1
EN点乘AC=根号3倍x-1/2=0 => x=1/2除以根号3=根号3/6
所以N点坐标为(根号3/6, 0, 1), 解毕.
要点:向量点乘公式、直线垂直于直线的向量计算公式.

在底面为平行四边形的四棱柱ABCD 四棱柱P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB,E是棱PB的中点.证明AE⊥平面PBC 已知四棱柱ABCD—A1B1C1D1中,侧棱AA1⊥底面ABCD,且AA1=2,底面ABCD的边长均大于2,且∠DAB=45°,点p在底面ABCD内运动,且在AB,CD上的摄影分别为M,N若|PA|=2,则三棱柱P-D1MN体积的最大值为? 在四棱柱p-abcd中 侧面PCD垂直底面ABCD pd垂直CD E为PC中点 底面ABCD是直角梯形 AB//CD 角ADC为直角 Ab=AD=PD=1 CD=2 求BE//平面PAD。求BC垂直PBD 求四棱柱P-ABCD的体积 如图在四棱柱P-ABCD中底面ABCD是菱形,角BAD=60度,AB=2PA=1PA垂直面ABCD 在四棱柱ABCD-A1B1C1D1中,底面ABCD是正方形,侧棱AA1垂直底面ABCD,E为AA1的中点,求证:A1C//平面EBD 如图,在四棱柱P-ABCD中,底面ABCD为直角梯形,角BAD=90度,AD//BC.AB=BC=a.AD=2a.PA垂直平面ABCD.PD与...如图,在四棱柱P-ABCD中,底面ABCD为直角梯形,角BAD=90度,AD//BC.AB=BC=a.AD=2a.PA垂直平面ABCD.PD与平面ABCD成30角 如图,在四棱柱P-ABCD中,底面ABCD是正方形侧棱PD⊥底面ABCD,PD=DC,E是PC中点求EB与底面ABCD所成角的正切值 在底面为正方形的四棱锥P-ABCD中,PA⊥底面ABCD,PA=AB=2,则四棱锥P-ABCD的体积为 在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥平面ABCD,AB=根号3 如图,四棱柱ABCD-A’B’C’D’中,底面ABCD是为正方形, 侧棱AA’⊥底面 ABCD,AB如图,四棱柱ABCD-A’B’C’D’中,底面ABCD是为正方形, 侧棱AA’⊥底面 ABCD,AB =23,AA’=6.以D为圆心, DC’为半径在侧面BCC 棱锥P-ABCD的顶点P在底面ABCD中投影恰好是A,则四棱锥P-ABCD体积为三视图在这里 在四棱锥P-ABCD中,底面ABCD为矩形、面PAD⊥面ABCD,PA=PD,E为AD的中点,求证:PE垂直面ABCD 在四棱锥P-ABCD中,PD垂直于底面ABCD,底面ABCD为正方形,M为PC的中点,PD=AB,求证PA平行平面MBD 在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,F是PB的中点, 求证:DF⊥AP; 如图在底面为平行四边形的四棱锥P-ABCD中 求解如何求体积 在四棱柱P-ABCD中,PD垂直底面ABCD,底面ABCD为正方形,PD=DC,E,F分别是AB,PB的中点.在平面PAD内是否存在一点G,使G在平面PCB上的射影为△PCB的外心.△PCB的外心位置在哪里的?如何才能知道? 在四棱柱P-ABCD中 底面ABCD为矩形 侧棱PA⊥底面ABCD AB=根号3 BC=1 PA=2 E为PD的中点 向量法(1)求AC与PB所成角的余弦值(2)在侧面PAB中 找一点N 使NE⊥面PAC