已知x,y,z是正实数,且xyz(x+y+z)=1,则(x+y)(y+z)的最小值是多少?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 14:34:49
xQN0~5Xob"`i{J'Y4M-xw^N8LbxǛ5TPI{"pB \)ǐtƱ>''M-[:9pm]B˦G6j*(O_^a6ptca@g$Kߋ\ܚs[-.AW8@8{3{-U/?VU$풚GO"*
已知x,y,z是正实数,且xyz(x+y+z)=1,则(x+y)(y+z)的最小值是多少?
已知x,y,z是正实数,且xyz(x+y+z)=1,则(x+y)(y+z)的最小值是多少?
已知x,y,z是正实数,且xyz(x+y+z)=1,则(x+y)(y+z)的最小值是多少?
(x+y)(y+z)
=(x+y+z-z)(x+y+z-x)
=(x+y+z)^2-(x+z)(x+y+z)+xz
=(x+y+z)^2-(x+z+y-y)(x+y+z)+xz
=(x+y+z)^2-(x+y+z)^2+y(x+y+z)+xz
=y(x+y+z)+xz
因为xyz(x+y+z)=1,所以y(x+y+z)=1/xz,因此原式可化为xz+(1/xz),显然最小值为2.(可以把xz看成根号下xz的平方,1/xz看成根号下1/xz的平方,通过配方可发现最小值是2).
已知x、y、z、是正实数,且x+y+z=xyz,求1/(x+y)+1/(y+z)+1/(x+z)的最大值.
已知x.y.z是正实数,且xyz=1,则,的最小值为?
已知x,y,z是正实数,且xyz=1,求证
已知xyz为正实数,且x+2y+z=2,求xyz最大值
已知X.Y.Z是正实数,且XYZ(X+Y+Z)=1,则(X+Y)(Y+Z)的最小值是多少
已知x,y,z是正实数,且xyz(x+y+z)=1,则(x+y)(y+z)的最小值是多少?
已知x,y,z都是正实数,且x+y=xy,x+y+z=xyz,则z的取值范围是
,变态数学.已知xyz=1,且是正实数,求代数式[x+1][y+1][z+1]的最小值
已知x,y,z属于正实数,且xyz(x+y+z)=1,则(x+y)(y+z)的最小值为?
已知x,y,z都是正实数,且xyz(x+y+z)=1,则(x+y)(y+z)的最小值为?
已知 x,y,z都是正实数,且 x+y+z=xyz 证明 (y+x)/z+(y+z)/x+(z+x)/y≥2(1/x+1/y+1/z)^2
若x,y,z是正实数,且x+y+z=xyz,证明:(y+z/x)+(z+x/y)+(x+y/z)≥2倍的(1/x)+(1/y)+(1/z)的平方
知x,y,z都是正实数,且x+y=xy,x+y+z=xyz,则z的最大值是?
已知x,y,z属于正实数,且xyz(x+y+z)=1,则(x+y)(y+z)的最小值为?已知x,y,z为正实数,且xyz(x+y+z)=1,那麽(x+y)(y+z)的最小值为多少?
简单的高中数学题目 正确追50分 在线等已知x,y,z都是正实数,且满足条件xyz(x+y+z)=1,则(x+y)*(y+z)的最小值是没过程不追分
(1)设x,y,z是正实数,且x²+y²+z²=9,证明不等式:2(x+y+z)-xyz ≤10;(2)设x,y,z是正实数,且(1/x)+(1/y)+(1/z)=1,求证:√(x+yz)+√(y+zx)+√(z+xy)≥√(xyz)+√x+√y+√z .
xyz是正实数,求证:x/(y+z)+y/(z+x)+z/(x+y)>=3/2
设x,y,z为正实数,且x+y+z>=xyz,求x^2+y^2+z^2/xyz的最小值