若三角形ABC的内角满足sin2A=2/3 则sina+cosa=_____ (sinA+cosA)^2=1+sin2A=5/3 所以sinA+cosA=根号15/3 为什么sinA+cosA就=根号15/3了呢 请懂的人讲讲
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 15:15:42
xRN@~ }
zD^PZ&(&H&F%m)2;CoSJM~7߬Og|nfwoq ZB=q8(q)EA6ztR*Z::2^*t
Bh|(ر6y[|rkM{ m
n!w89)}+JLOe&hħ%%&Vxx5XJ6>t
UΪX_}b@n]MlSHԽp\'
}a`y tg*g/A)V&|6R!ͥȫnqZ˯_Wpj*\&%BV۠a#~R^\!
若三角形ABC的内角满足sin2A=2/3 则sina+cosa=_____ (sinA+cosA)^2=1+sin2A=5/3 所以sinA+cosA=根号15/3 为什么sinA+cosA就=根号15/3了呢 请懂的人讲讲
若三角形ABC的内角满足sin2A=2/3 则sina+cosa=_____ (sinA+cosA)^2=1+sin2A=5/3 所以sinA+cosA=根号15/3 为什么sinA+cosA就=根号15/3了呢 请懂的人讲讲
若三角形ABC的内角满足sin2A=2/3 则sina+cosa=_____ (sinA+cosA)^2=1+sin2A=5/3 所以sinA+cosA=根号15/3 为什么sinA+cosA就=根号15/3了呢 请懂的人讲讲
根号下(5/3)=根号5/根号3
因为下出来的分母不能带根号 所以分母的根号3要换成有理数
方法就是分母分子同时乘以一个根号3
最后就得根号15/3
(sinA+cosA)^2=(sinA+cosA)*(sinA+cosA)=1+sin2A
这是一个数学公式
就是把5/3开根号
根号(5/3)=根号(15/9)=根号15/根号9=根号15/3