limx→0 (tanx-sinx)/[(2+x^2)^(1/2)]*{[e^(x^3)]-1}=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 03:41:22
limx→0 (tanx-sinx)/[(2+x^2)^(1/2)]*{[e^(x^3)]-1}=?
x)̭x6@A$1B83BS?ZH"H3NPH3V::5N"X]Z[{"}rPd jA{kʋKY';NXbY[=۴)v\]jtVւ"?ebP z@@ ϧxe/{yӎ@pUgT_ 4Mj Aa @< k*H#M/kUh*@l @ O

limx→0 (tanx-sinx)/[(2+x^2)^(1/2)]*{[e^(x^3)]-1}=?
limx→0 (tanx-sinx)/[(2+x^2)^(1/2)]*{[e^(x^3)]-1}=?

limx→0 (tanx-sinx)/[(2+x^2)^(1/2)]*{[e^(x^3)]-1}=?
你的{[e^(x^3)]-1}应该在分母上吧,要不然没答案
lim(x→0) (tanx-sinx)/{[(2+x^2)^(1/2)]*[e^(x^3)-1]}
=lim(x→0)1/√2* (tanx-sinx)/x^3  (0/0,运用洛必达法则)
=lim(x→0)1/√2* (sec^2x-cosx)/(3x^2)
=lim(x→0)1/√2* (1-cos^3x)/(3x^2*cos^2x)
=lim(x→0)1/√2* (1-cos^3x)/(3x^2) (0/0,运用洛必达法则)
=lim(x→0)1/√2* (2cos^2xsinx)/(6x)
=√2/6