已知函数f(x)=x2-(2a+1)x+alnx?描述:〔1〕当a=2时,y=f(x)在点(1,f(1))处的切线方程.〔2〕求函数f(x)...已知函数f(x)=x2-(2a+1)x+alnx?描述:〔1〕当a=2时,y=f(x)在点(1,f(1))处的切线方程.〔2〕求函数f(x)的单调区间

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:26:44
已知函数f(x)=x2-(2a+1)x+alnx?描述:〔1〕当a=2时,y=f(x)在点(1,f(1))处的切线方程.〔2〕求函数f(x)...已知函数f(x)=x2-(2a+1)x+alnx?描述:〔1〕当a=2时,y=f(x)在点(1,f(1))处的切线方程.〔2〕求函数f(x)的单调区间
xUKo@+*Uv$jղ?9piEe9$4h"5*$8^NzmPzȡ`;x'==Aώ5x閚Hh2"oBs|ucD/XsOYi^($꼷5OEu]x${8a$ɧe>Kͷd$ө?snt60}g85H*t!q$a YQ2{ ;ΒiX z&ֈ2.kp ]KdQ iD$ j+Dj/,B1\zMrua>5@Y۞Kг#ǪKVxb{1Am8cGziAX1+'ІqP1v>Blx{>į~|B a ]A`Gb0;DDduߗ6?9}PaL.B\D7>

已知函数f(x)=x2-(2a+1)x+alnx?描述:〔1〕当a=2时,y=f(x)在点(1,f(1))处的切线方程.〔2〕求函数f(x)...已知函数f(x)=x2-(2a+1)x+alnx?描述:〔1〕当a=2时,y=f(x)在点(1,f(1))处的切线方程.〔2〕求函数f(x)的单调区间
已知函数f(x)=x2-(2a+1)x+alnx?描述:〔1〕当a=2时,y=f(x)在点(1,f(1))处的切线方程.〔2〕求函数f(x)...
已知函数f(x)=x2-(2a+1)x+alnx?描述:〔1〕当a=2时,y=f(x)在点(1,f(1))处的切线方程.〔2〕求函数f(x)的单调区间.

已知函数f(x)=x2-(2a+1)x+alnx?描述:〔1〕当a=2时,y=f(x)在点(1,f(1))处的切线方程.〔2〕求函数f(x)...已知函数f(x)=x2-(2a+1)x+alnx?描述:〔1〕当a=2时,y=f(x)在点(1,f(1))处的切线方程.〔2〕求函数f(x)的单调区间
第一题,
当a=2时,f(x)=x²-5x+2lnx
当x=1时,f(1)=1²-5*1+2*0=-4
f(x)=x²-5x+2lnx求导,得,
f(x)’=2x-5+2/x
当x=1时,k=f(x)’=-1
所以,y-(-4)=(-1)*(x-1)
得,y=-x-3
第二题,我发私信给你...

(I)当a=2时,f(x)=x2-(2a+1)x+alnx=x2-5x+2lnx,
∴f′(x)=2x-5+2/x,
∴f′(1)=2-5+2=-1,
∵f(1)=1-5=-4,
∴曲线y=f(x)在点(1,f(1))处的切线方程为:x+y+3=0.
(II)f′(x)=2x-(2a+1)+a/x=2x2-(2a+1)x+a/x,
令f′(x)=0,...

全部展开

(I)当a=2时,f(x)=x2-(2a+1)x+alnx=x2-5x+2lnx,
∴f′(x)=2x-5+2/x,
∴f′(1)=2-5+2=-1,
∵f(1)=1-5=-4,
∴曲线y=f(x)在点(1,f(1))处的切线方程为:x+y+3=0.
(II)f′(x)=2x-(2a+1)+a/x=2x2-(2a+1)x+a/x,
令f′(x)=0,得x1=1/2,x2 =a.
①当a>1/2时,由f′(x)>0,得x>a,或x<1/2,
f(x)在(0,1/2),(a,+∞)是单调递增.
由f′(x)<0,得1/2<x<a,
∴f(x)在(1/2,a)上单调递减.
②当a=1/2时,f′(x)≥0恒成立,
∴f(x)在(0,+∞)上单调递增.
③当0<a<1/2时,由f′(x)>0,得0<x<a,或x>1/2,
∴f(x)在(0,a),(1/2,+∞)上单调增加,
由f′(x)<0,得a<x<1/2,
∴f(x)在(a,1/2)上单调递减.
④当a≤0时,由f′(x)>0,得x>1/2,
∴f(x)在(1/2,+∞)上单调递增.
由f′(x)<0,得0<x<1/2,
∴f(x)在(0,1/2)上单调递减.

收起

(1)f(x)=x2-(2a+1)x+alnx 当a=2时,f(x)=x2-5x+2lnx
对f(x)求导:f(x)=2x-5+2/x x=1时 导数 f(x)=-1 f(1)=-4
设切线方程y=ax+b a=-1 将y=-4 x=1代入得 b=-3
所以切线方程 y=-x-3