高等数学A,函数的微分,第1题,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 02:28:38
高等数学A,函数的微分,第1题,
xRnA~ I-;GY&M^ ,[.F6iEҘTƤ#م+_Y$h!s|?3g|smc8\`3MtDg[E6s^Ky [%>RX뱈/N79.'x**Lh4`{oCpVb% ETe#ꢮ,I=$*AT4 5Q҃늢 P1Cyd <0}"/L^4^PoA9yNL_g·'KU]v:h:]FSlGwChsz W~wʽ9c3 1B X-9P/. %`0u3$aR2g3^~G޾8`{*e20{+ B370 uaW~~fDc5]EƎcK;qis48KX"@ 20 a2aK;?nQ55)7C;KQnr=h$_pޝ &6 /nO0Dn{@bmZ$*yqs

高等数学A,函数的微分,第1题,
高等数学A,函数的微分,第1题,
 

高等数学A,函数的微分,第1题,
该近似公式通常是利用微分的定义来证明的:设 f(x) 在 x0 可微,则有微分的定义,有
    f(x) - f(x0) = f'(x0)(x-x0) + o(x-x0) ≈ f'(x0)(x-x0),

    f(x) ≈ f(x0) + f'(x0)(x-x0),
因此,若取 x=0,则有
    tanx≈ tan0 + 1*(x-0) = x,ln(1+x) ≈ ln(1+0) + 1*(x-0) = x,
这样,
    tan45‘ = tan(π/240) ≈ π/240 = ……,
    ln(1.002) = ln(1+0.002) ≈ 0.002.

这个是典型题目

TANX=SINX/COSX
所以当X趋近0时,就是SINX/COSX的值
而极限SINX/X的值为1,就SINX趋近X,且COSX趋近1
所以,结果就是X
此题证毕.