∫3^xcosxdx用分部积分法怎么算?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 21:54:31
∫3^xcosxdx用分部积分法怎么算?
x){Ա8"9"O;^6x|=lg }Ovv<_7&Hxv6$o==)řy`a[K ( Sl2Z9y ~ 6P\j.1XA0lY:^lN=4 5ҚqF0`(&jđ=[>6yvps

∫3^xcosxdx用分部积分法怎么算?
∫3^xcosxdx用分部积分法怎么算?

∫3^xcosxdx用分部积分法怎么算?
原式=∫3^xdsinx
=sinx*3^x-∫sinxd3^x
=sinx*3^x-∫sinx*ln3*3^xdx
=sinx*3^x+ln3(∫3^xdcosx)
=sinx*3^x+ln3(cosx*3^x-∫cosx*ln3*3^xdx)
所以有:(1+(ln3)^2)∫cosx*3^xdx=sinx*3^x+ln3*cosx*3^x
原式=(sinx*3^x+ln3*cosx*3^x
)/(1+(ln3)^2))

I=∫3^xcosxdx=∫3^xd(sinx)=3^x*sinx-∫sinxd(3^x)=3^xsinx-ln3∫3^x*sinxdx ...(1)
I=∫cosxd(3^x/ln3)=cosx*3^xln3-∫3^xln3d(cosx)=ln3*cosx*3^x+ln3∫3^x*sinxdx...(2)
2I=3^xsinx+ln3*cosx*3^x
I=(3^xsinx+ln3*cosx*3^x)/2