已知x^2/a^2+y^2/b^2(a>b>0)的长轴是短轴的2倍,且过点C(2,1),C关于原点O的对称轴为D1.若点P在椭圆上,是否存在CD的斜率*DP的斜率为定值,若存在求出定值,不存在说明理由2.平行于CD的直线l交椭圆于MN两

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 01:54:19
已知x^2/a^2+y^2/b^2(a>b>0)的长轴是短轴的2倍,且过点C(2,1),C关于原点O的对称轴为D1.若点P在椭圆上,是否存在CD的斜率*DP的斜率为定值,若存在求出定值,不存在说明理由2.平行于CD的直线l交椭圆于MN两
xUKSP+]&sKC"lAft K8fXdT4@"*h-ZR Mʿsteýssgɋo~hhqr?BTNZvoaU;-$KیHum)RiFĉJ)fA WZ,F;<q846pw/plLNKO3JK2^Hƶ)իcJ]Wȉ5cՎZv+('{ [" *\25蟜k*AI8_SS+mz%~bYOqWYyD@Q.I;xӵs@nXm̺@$(Y p!,wd1,IFxه3!Sx=lA8IdICuuFxg^[xP̱(o8Qܧ܌_C 8\B[~^#x 9)~U? sO"b=/3ޜ/hh]4(胇Fc\;[ PW35>RZk[iZ#,& 삺v~z҉/emPҝVc0xot<F[MJJ`?:N8Qꯔ>HK% :21XFOJC" \O"i H bƶ(hCDai8m Mæ N O]XxDNg]`mkbE$h$95r` h/i4m׬.{\YQ(sg73jZy3'sr

已知x^2/a^2+y^2/b^2(a>b>0)的长轴是短轴的2倍,且过点C(2,1),C关于原点O的对称轴为D1.若点P在椭圆上,是否存在CD的斜率*DP的斜率为定值,若存在求出定值,不存在说明理由2.平行于CD的直线l交椭圆于MN两
已知x^2/a^2+y^2/b^2(a>b>0)的长轴是短轴的2倍,且过点C(2,1),C关于原点O的对称轴为D
1.若点P在椭圆上,是否存在CD的斜率*DP的斜率为定值,若存在求出定值,不存在说明理由
2.平行于CD的直线l交椭圆于MN两点,求△CMN面积的最大值及此时l的方程

已知x^2/a^2+y^2/b^2(a>b>0)的长轴是短轴的2倍,且过点C(2,1),C关于原点O的对称轴为D1.若点P在椭圆上,是否存在CD的斜率*DP的斜率为定值,若存在求出定值,不存在说明理由2.平行于CD的直线l交椭圆于MN两
x^2/a^2+y^2/b^2=1(a>b>0)的长轴是短轴的2倍,
∴a=2b.
它过点C(2,1),
∴4/(4b^2)+1/b^2=1.
∴b^2=2,a^2=8.
椭圆方程为x^2/8+y^2/2=1.①
1.C关于原点O的对称点为D(-2,-1).
∴CD的斜率=CO的斜率=1/2.
若CD的斜率*DP的斜率为定值,则DP的斜率为定值,P为椭圆上的定点,不合题意.
CP的斜率*DP的斜率为定值?
2.设l:x=2y+m,代入①*8,整理得
8y^2+4my+m^2-8=0,
△=16m^2-32(m^2-8)
=16(16-m^2),
|MN|=(√△)/8*√5,
C到MN的距离d=|m|/√5,
∴S△CMN=(1/2)|MN|d=(1/4)√[m^2(16-m^2)]

首先,我觉得题目你打错了,应该是求“.若点P在椭圆上,是否存在CP的斜率*DP的斜率为定值,若存在求出定值,不存在说明理由”
由已知设椭圆方程x^2/(4b^2)+y^2/b^2=1
过点C(2,1),
所以方程为x^2/8+y^2/2=1
设存在...

全部展开

首先,我觉得题目你打错了,应该是求“.若点P在椭圆上,是否存在CP的斜率*DP的斜率为定值,若存在求出定值,不存在说明理由”
由已知设椭圆方程x^2/(4b^2)+y^2/b^2=1
过点C(2,1),
所以方程为x^2/8+y^2/2=1
设存在P(x,y)是椭圆上一点使得CP的斜率*DP的斜率为定值
则CP的斜率为(y-1)/(x-2) DP的斜率为(y+1)/(x+2)
所以斜率之积为(y^2-1)/(x^2-4)
而P在椭圆上,x^2=8-4y^2
所以斜率之积为(y^2-1)/[-4(y^2-1)]
所以斜率之积等于-1/4为定值。
即存在椭圆上一点P使得他们的斜率之积等于-1/4

收起