曲线y^2=x在点(1,1)的切线方程是x-2y+1=0 求图形面积和绕x轴旋转一周的体积曲线y^2=x在点(1,1)的切线方程是x-2y+1=0,上述曲线和切线及x轴所围成的平面图形的面积是多少,上述平面图形绕x轴

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:41:03
曲线y^2=x在点(1,1)的切线方程是x-2y+1=0 求图形面积和绕x轴旋转一周的体积曲线y^2=x在点(1,1)的切线方程是x-2y+1=0,上述曲线和切线及x轴所围成的平面图形的面积是多少,上述平面图形绕x轴
xVRF~dl26M 34ٲmnLW jd2S( 6xJWYDG={wsv~}qp2hyk\l{y7H0֞l7gcG366 y<]+hv ⵣ`cRhyR#OP`e+hiWWgp|cH60%Uʨ6kt8(p߫V\ss{hNr^ _y`Ǫ ͎_N\}j̯2nj,6WGgͬ>cʠՋxs?U~b{ų>gm}/c/4s@zG9F@%#]U]l| 7'f-n i@eTu g9ʩ˻>bv!4ObWCdpl<k5ľWxQ-Z}6~^ꪳeܫmYRgF;2얡#,R,Rk-d펊鵎B6w_T f*Dhwԍn ~劋`ͣ#1u6̻<'XHMәl .iIL`;^遡 >aX )AIx)̊'ycD ICB"LRaI2TP$Hl PIފ \s\D ⒉dNXLqH%h͈CD bZ=oVn B7R0 %[ ܍ Tڗ%\%{R^|a o, *l7Tr'Q[ȭkKdKsf6U$Pȟ<ˊj >@ Id\_Ҏv\A#}4lɝ{Y/ ?eKh  bVwx<*cl|ٛTZ8h$b #enq[*JʕPJ0`L졙"vܻ8 \õY@;[=}ʟ"hx

曲线y^2=x在点(1,1)的切线方程是x-2y+1=0 求图形面积和绕x轴旋转一周的体积曲线y^2=x在点(1,1)的切线方程是x-2y+1=0,上述曲线和切线及x轴所围成的平面图形的面积是多少,上述平面图形绕x轴
曲线y^2=x在点(1,1)的切线方程是x-2y+1=0 求图形面积和绕x轴旋转一周的体积
曲线y^2=x在点(1,1)的切线方程是x-2y+1=0,上述曲线和切线及x轴所围成的平面图形的面积是多少,上述平面图形绕x轴旋转一周的体积是多少.照样给详细的步骤.回答了,
呃,,要用定积分的方法求

曲线y^2=x在点(1,1)的切线方程是x-2y+1=0 求图形面积和绕x轴旋转一周的体积曲线y^2=x在点(1,1)的切线方程是x-2y+1=0,上述曲线和切线及x轴所围成的平面图形的面积是多少,上述平面图形绕x轴
见图.
切线与x轴的交点为B(-1, 0), 与y轴的交点为C(0, 1/2)
切线(y = (x+1)/2)与抛物线和坐标轴所围的区域分别为绿色和紫色.
绕x轴旋转一周,在x处截面积为:
f(x) = π[(x+1)/2]²  = π[(x+1)²/4   (-1 ≤ x < 0)
      = π[(x+1)/2]²  - π(√x)²  =  π[(x+1)²/4 - πx = π[(x-1)²/4   (0 ≤ x ≤ 1)
V = ∫ π(x+1)²dx/4     (从-1到0)
 + ∫ π[(x-1)²dx/4   (从0到1)
= (π/4)∫ (x+1)²d(x+1) (从-1到0)
+  (π/4)∫ (x-1)²d(x-1)   (从0到1)
= π(x+1)³/12   (从-1到0)
+ π(x-1)³/12   (从0到1)
= π/12 + π/12
= π/6

面积=三角形-曲线面积=(1/2)*2*1-(0到1)积分【根号xdx】
=1-(1/2)=1/2
体积=圆锥-曲线体积=(1/3)π*1*2-(0到1)积分【πy方dx】
=(2π/3)-π(0到1)积分【y方dx】
=(2π/3)-π(0到1)积分【xdx】
=(2π/3)-(π/2)
=(π/6)

学过微积分么,这个需要用到回转体的积分方法。
面积:y轴右侧是两个函数(切线和曲线上半部分)的差在(0,1)上的定积分 + y轴左侧的三角形。
体积:y轴右侧 取微元为dx厚的薄片,该薄片的面积为环形的面积(S大圆减去S小圆),然后求其在(0,1)上的定积分。...

全部展开

学过微积分么,这个需要用到回转体的积分方法。
面积:y轴右侧是两个函数(切线和曲线上半部分)的差在(0,1)上的定积分 + y轴左侧的三角形。
体积:y轴右侧 取微元为dx厚的薄片,该薄片的面积为环形的面积(S大圆减去S小圆),然后求其在(0,1)上的定积分。

收起