证明:级数∑(∞,n→1) sin(π√(n²+1))是交错级数,并证明该级数条件收敛.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:08:56
证明:级数∑(∞,n→1) sin(π√(n²+1))是交错级数,并证明该级数条件收敛.
xSJA~!\֛\_D &VXae"͎?^ 3TF[u9$2rqNZzDz[{ dj=xd|L*iJ<4 MUgW^I&N& kYəd_ϰgkfc)~nPLs}jc( 3@{`ȩjQfTe j`7Zև"NNG3J,T~TKlzP|Vn`܂^XPY}sc

证明:级数∑(∞,n→1) sin(π√(n²+1))是交错级数,并证明该级数条件收敛.
证明:级数∑(∞,n→1) sin(π√(n²+1))是交错级数,并证明该级数条件收敛.

证明:级数∑(∞,n→1) sin(π√(n²+1))是交错级数,并证明该级数条件收敛.
首先由和差化积应该知道
(-1)^nsin(π√(n²+1)-nπ)
= (-1)^nsin(π√(n²+1))*cosnπ=
(-1)^(2n)*sin(π√(n²+1))=sin(π√(n²+1))
所以sin(π√(n²+1))=(-1)^nsin(π√(n²+1)-nπ)=(-1)^nsin[π/(√(n^2+1)+n)]所以原级数为交错级数
又lim n->无穷 sin[π/(√(n^2+1)+n)]/(1/n)=lim nπ/(√(n^2+1)+n)]=π/2所以sin(π√(n²+1))与调和级数同发散.
又容易知lim(n→无穷)sin1/[√(n²+1)+n]π=0
且容易验证单调性sin1/{[√[(n+1)²+1]+(n+1)]}π≤sin1/[√(n²+1)+n]π
根据莱布尼茨判别法可知,此交错级数收敛.
本身收敛,绝对值发散,所以级数条件收敛.