(x-2)/(x+2)+16/(4-x^2)=(x+2)/(x-2)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:34:49
(x-2)/(x+2)+16/(4-x^2)=(x+2)/(x-2)
xSN@~mR¡sI I@$*h"T>Kg ۅTpwN37_뮖I DA* R4 1A\=M$Ѧaa0^eyâ%;λ182mkX?Ndu36E="[3GpecV5"sr|Ƌ)(Z  BH!$"va_;-6fcx}nڝK9w= #RbKn'a7>B8ZUnfI.,&;fREXC6pQ7=k(tG}2cU 

(x-2)/(x+2)+16/(4-x^2)=(x+2)/(x-2)
(x-2)/(x+2)+16/(4-x^2)=(x+2)/(x-2)

(x-2)/(x+2)+16/(4-x^2)=(x+2)/(x-2)
方程两边同时乘以4-x^2得,-(x-2)^2+16=-(x+2)^2,整理得
x^2=8,x=±2倍根号2,经检验,不是增根.

X= -2

16/(4-x^2)=0 得16/(2-x)(2+x) =0 (2-x)(2+x) =0 得x=2或-2


(x-2)/(x+2)-16/[(x+2)(x-2)]=(x+2)/(x-2)
方程的左右两边同乘以(x+2)(X-2)
x^2-4x+4-16=x^2+4x+4
-8x=16
...

全部展开


(x-2)/(x+2)-16/[(x+2)(x-2)]=(x+2)/(x-2)
方程的左右两边同乘以(x+2)(X-2)
x^2-4x+4-16=x^2+4x+4
-8x=16
x=-2
检验:
把x=-2分别带入原方程的左右两边
因为分母不能为0
所以原方程无实数根

收起