在同一平面内任意划N条直线,N大于等于2,最多能有几个交点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:22:10
在同一平面内任意划N条直线,N大于等于2,最多能有几个交点
xW]SI+0--?C#qLg"69\JJ+s/ A{&΃mČ:b-kb gD c TA-*›V:(.RUFy0VJ.kexCm}uh ĮfЃ5d_$d|= F<2SX9; hy*RL((V|#yq6h1Uc# ; ߽ScqK)0ʃ.Eijy9ڮ?6VBCӛb6+ 82.FC'p?WLz{h;#-uE)C9pX7y{p'M,)Ҝk &ob D[I 8V N.AʮĹ=lt7p3`\Z3TQƛʻGiUjdzZTJ:lPrIWwz]ĨEsЁAU':_9^?87

在同一平面内任意划N条直线,N大于等于2,最多能有几个交点
在同一平面内任意划N条直线,N大于等于2,最多能有几个交点

在同一平面内任意划N条直线,N大于等于2,最多能有几个交点
【这是最多的,希望你会喜欢.】
交点的个数最多有(n-1)n/2个,(任意3条不共点)
最少有1个 (N条直线全部过一点)
注意:“两两相交”是说“任意两条直线都相交”
分析过程:
平面内有2条直线两两相交最多可以得到1个交点,
平面内有3条直线两两相交最多可以得到1+2=3个交点,(即第四条直线与前面每条直线都相交)
平面内有4条直线两两相交最多可以得到1+2+3=6个交点,(即第四条直线与前面每条直线都相交)
平面内有5条直线两两相交最多可以得到1+2+3+4=10个交点,(即第四条直线与前面每条直线都相交)
.
所以平面内有n条直线两两相交最多可以得到1+2+3+...+n-1=(1+n-1)*(n-1)/2=(n^2-n)/2个交点,
也可以这样分析:
N条直线中任意取一条直线L,则L与剩余的N-1条直线都相交,L上最多有N-1个交点
同理,每条直线上最多也是有N-1个交点
所以N条最多共有N*(N-1)个交点,
但任意两条直线的交点在计算时都算了再次(一条直线一次)
所以N条直线最多有交点N*(N-1)/2个
【下面的是最少的,遇到这种题可以看看】
设N条直线至少有一个交点的最少交点数为S(N)
那么有:
(1) S(1)=0
(2) 考虑平面上已经有N-1条直线,它们交点数为T(N-1),现在再添一条直线进去
1.新加的直线有无可能与这些直线都平行?——不可能,因为若是这样前N-1条直线互相平行,也就是不可能有交点,矛盾
2.那么就有S(N) >= T(N-1)+1 >= S(N-1)+1
(3)那么就能推出S(N) >= N-1
(4)等号能否取到?——能,只要有N-1条直线相互平行,另一条与他们都有交点即可
综上,所求答案为N-1

换一种思维
写一个证明看看.
n-1个交点的情形是存在的,前面大家都说了,下面证明最少.
首先n=3的时候容易知道有且只有一种两个交点的情况,就是有一对平行线,另外一条直线穿过它们.
假如n=k的时候最少有k-1个交点,且只有两种可能的情形,一种是k-1条直线平行,另外一条直线穿过它们(记为情形A).另外一种情况是两条直线平行,其它k-2条直线交于一点(为了方便记为中心点),且这点在两条平行直线的某一条上,这样总共也是k-1个交点(记为情形B).
注意,n=3的时候,同时符合这两种情形.
n=k+1时,任选出其中k条直线.
如果这k条直线平行,显然余下的一条直线和它们相交,有k个交点.这属于情形A.
如果这k条直线有一个交点,那么另外一条直线不交于这一点.因为这条直线至多和这k条直线中的一条平行,所以最少有k-1个交点.一共是k个交点.这属于情形B.
如果这k条直线交点多于一个,那么由归纳假设,至少有k-1个交点.如果有k个或者k个以上的交点,命题不用再证.下面证明有k-1个交点的情形.
有k-1个交点,由归纳假设,只有两种情况.
如果是情形B,我们很容易发现已有的k-1个交点,任意两个交点已经有直线通过,所以余下的那条直线至少会增加一个交点.容易看出,增加一个交点也只有一种情况,那就是余下的那条直线通过中心点.这种情况还是属于情形B.
如果是情形A,更简单,余下的那条直线必须平行于前面的k-1条直线.属于情形A.
于是命题得证.
证明也许可以简化一点点,比如n=k+1时缩小k条直线的交点的情形,讨论也许会少些.但是我觉得不简化好像看起来更清楚,也容易理解,所以全部写出类.
--很高兴可以帮助你们

在同一平面内任意划N条直线,N大于等于2,最多能有几个交点 设平面内有n条直线n大于等于3,其中有且只有两条直线互相平行,任意三条直线不过同一点若用设平面内有在设平面内有n条直线n大于等于3,其中有且只有两条直线互相平行,任意三条直线不过同 在同一平面内有N(N大于等于3)条直线都两两相交没有三条相交那么这个N条直线把平面分成几各区域? 在同一平面内有n条直线,每两条直线都有焦点,且任意三条直线不过同点,则这n条直线共有几个交点在同一平面内有n条直线,每两条直线都有焦点,且任意三条直线不过同点,则这n条直线共有______ 平面内有n(n大于等于2)条直线,其中任意两条直线都相交,任意三条直线不过同一点,设其交点个数为An.写出An-1到An的递推关系式. 设平面内有n条直线(n大于等于3),其中有且仅有两条直线互相平行,任意三条直线不过同一点,若用f(n)...设平面内有n条直线(n大于等于3),其中有且仅有两条直线互相平行,任意三条直线不过 在同一平面内任意三点不在同一直线上的n个点(n≥2)最多能确定几条直线? 分布在同一平面内的几条直线,每两条不平行,每三条不交于一点证明他们将平面划分为f(n)=1/2(n^2+n+2)个区 在同一平面内,6条直线最多有多少个交点,N(N为大于1的整数)条直线最多有多少个交点? 已知n(n大于等于2)个点,P1、P2、P3、…P4在同一平面内,接下)且其中没有任何三点在同一直线的所有直线上,(设Sn表示过这n点中的任意2个点所作的所有直线的条数,S2=1,S3=3,S4=6,S5=10,…推断Sn 已知n(n大于等于2)个点,P1、P2、P3、…P4在同一平面内,接下)且其中没有任何三点在同一直线的所有直线上,(设Sn表示过这n点中的任意2个点所作的所有直线的条数,S2=1,S3=3,S4=6,S5=10,…推断Sn 在同一平面内任三点不在同一直线的五个点最多能确定几条直线、N个点(N大于等于2)最多能确定几条直线 在同一平面内的n条直线两两相交,最多共有28个交点,则等于多少?. 在平面内有n条直线连两相交(n大于等于2的整数),最多有多少个交点? 在平面内有n条直线两两相交(n等于或大于2的整数),最多有多少个交点? 在同一平面内n条直线两两相交可把平面分成几部分 在同一平面内n条直线两两相交可把平面分成几部分 在同一平面内n条平行直线与两条平行线相交构成几个#字形