在四棱锥S-ABCD中,底面ABCD是正方形,SA垂直底面ABCD,SA=AB,M,N分别是SB,SD的中点(1)求证BD//平面AMN(2)求证SC垂直平面AMN

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:54:41
在四棱锥S-ABCD中,底面ABCD是正方形,SA垂直底面ABCD,SA=AB,M,N分别是SB,SD的中点(1)求证BD//平面AMN(2)求证SC垂直平面AMN
xT]oP+ Ɍ&Z(Izos`1 cfT6K !c_®<&..0>OӄSn['ËrWLg$sܧ> ՚ǔ"Ub,)EzM̷'#wb*-4l<1gud~7m\juNJykHi[5fǴt^m9.uxDVͧU; GMsvDlPDsY[:ŗ=&=1_s =E v*> Z&@sm| $bEl#~;Gvl$f&XۑSÐ0% 6.U {״ؖYxɍrlN#4㧕(nna$C'ϴGZ3`2TT{4 Å^(WFXSy7闅"R:+q3(n,< 6B*C5@F

在四棱锥S-ABCD中,底面ABCD是正方形,SA垂直底面ABCD,SA=AB,M,N分别是SB,SD的中点(1)求证BD//平面AMN(2)求证SC垂直平面AMN
在四棱锥S-ABCD中,底面ABCD是正方形,SA垂直底面ABCD,SA=AB,M,N分别是SB,SD的中点
(1)求证BD//平面AMN
(2)求证SC垂直平面AMN

在四棱锥S-ABCD中,底面ABCD是正方形,SA垂直底面ABCD,SA=AB,M,N分别是SB,SD的中点(1)求证BD//平面AMN(2)求证SC垂直平面AMN
(1)
在△SDB中,M,N分别是SB,SD的中点
则BD‖MN
又MN为平面AMN一条直线
所以BD‖平面AMN
(平面外一条直线平行于平面中的任一条直线,则此直线与该平面平行)
(2)
正方形底面对角线BD⊥AC
又SA垂直底面ABCD,所以BD⊥SA
则BD⊥平面SAC
得BD⊥SC
又BD‖MN,所以MN⊥SC
在RT△SAD中,SA=SD,N为SD的中点,则有AM⊥SD
又CD⊥平面SAD,即CD⊥AM
所以AM⊥平面SCD,得SC⊥AM
由MN⊥SC和SC⊥AM
可得SC⊥平面AMN 
(平面外一条直线同时垂直于该平面中的两条相交直线,则该直线垂直于平面)

如图,在四棱锥s—abc中,底面abcd是矩形,sa垂直于底面abcd 如图,在四棱锥S-ABCD中,底面ABCD是正方形,点M是SD中点,求证SB//ACM 如图在四棱锥P—ABCD中,底面ABCD是菱形, 见图.在四棱锥P-ABCD中底面ABCD是正方形 在四棱锥P-ABCD中,底面ABCD是正方形,证明:PA//平面EDB 如图,在四棱锥P-ABCD中,底面ABCD是平行四边形… 如图,如图,在四棱锥S-ABCD中,底面ABCD是菱形,SA⊥底面ABCD,M为SA的中点,N为CD的中点.如图,在四棱锥S-ABCD中,底面ABCD是菱形,SA⊥底面ABCD,M为SA的中点,N为CD的中点.(Ⅰ)证明:平面SBD⊥平面SAC;( 在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,指出哪些三角形是直角三角形? 已知正四棱锥s—ABCD的底面边长为4,求侧棱长和正四棱锥体积 已知正四棱锥s—ABCD的底面边长为4,求侧棱长和正四棱锥体积在线等 在四棱锥P-ABCD中,底面ABCD是矩形,且PA⊥平面ABCD.那么这个四棱锥中是有4个直角三角形,如何证明 “如图,在四棱锥S-ABCD中,底面ABCD是正方形,点M是SD的中点,求证SB//平面ACM” 正四棱锥题在正四棱锥S-ABCD中 侧面与底面所成的角为三分之派 则它的外接球半径与内切球半径的比值为_ 棱锥P-ABCD的顶点P在底面ABCD中投影恰好是A,则四棱锥P-ABCD体积为三视图在这里 请问数学题:在底面边长为2的正四棱锥P-ABCD中,若侧棱长PA与底面ABCD所成了角大小为 派/4,...在底面边长为2的正四棱锥P-ABCD中,若侧棱长PA与底面ABCD所成了角大小为 派/4,则此正四棱锥的斜高 如图,在四棱锥S-ABCD中,SB⊥底面ABCD,底面ABCD为矩形,点E为SB的中点求证AB⊥SCSD//平面AEC 在四棱锥S-ABCD中底面ABCD为正方形,侧棱SD⊥底面ABCD,E.F分别为AB,SC中点,证明:EF‖平面SAD 四棱锥S-ABCD中,底面ABCD是平行四边形,S是平面ABCD外一点,M为SC的中点 求证:SA∥平面BDM